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Exercises

6.1 Exponential atmosphere.1 2 (Computation) ©2

As you climb a mountain, the air becomes thin
and cold, and typically rather windy. Are any of
these effects due to equilibrium statistical mechan-
ics? The wind is not; it is due to non-uniform heat-
ing and evaporation in far distant regions. We have
determined that equilibrium statistical mechanics
demands that two equilibrium bodies in contact
must share the same temperature, even when one
of them is above the other. But gas molecules fall
down under gravity, . . .

This example is studied in [41, I.40], where Feyn-
man uses it to deduce much of classical equilib-
rium statistical mechanics. Let us reproduce his
argument. Download our molecular dynamics soft-
ware [10] from the text web site [129] and the hints
for this exercise. Simulate an ideal gas in a box
with reflecting walls, under the influence of gravity.
Since the ideal gas has no internal equilibration, the
simulation will start in an equilibrium ensemble at
temperature T .

(a) Does the distribution visually appear statisti-
cally stationary? How is it possible to maintain
a static distribution of heights, even though all the
atoms are continuously accelerating downward? Af-
ter running for a while, plot a histogram of the
height distribution and velocity distribution. Do
these distributions remain time independent, apart
from statistical fluctuations? Do their forms agree
with the predicted equilibrium Boltzmann distribu-

tions?

The equilibrium thermal distribution is time in-
dependent even if there are no collisions to keep
things in equilibrium. The number of atoms pass-
ing a plane at constant z from top to bottom must
match the number of atoms passing from bottom
to top. There are more atoms at the bottom, but
many of them do not have the vertical kinetic en-
ergy to make it high enough.

Macroscopically, we can use the ideal gas law
(PV = NkBT , so P (z) = ρ(z)kBT ) to deduce the
Boltzmann distribution giving the density depen-
dence on height.3

(b) The pressure increases with depth due to the in-
creasing weight of the air above. What is the force
due to gravity on a slab of thickness ∆z and area A?
What is the change in pressure from z to z − ∆z?
Use this, and the ideal gas law, to find the density
dependence on height. Does it agree with the Boltz-
mann distribution?

Feynman then deduces the momentum distribution
of the particles from the balancing of upward and
downward particle fluxes we saw in part (a). He
starts by arguing that the equilibrium probability
ρv that a given atom has a particular vertical ve-
locity vz is independent of height.4 (The atoms at
different heights are all at the same temperature,
and only differ in their overall density; since they do
not interact, they do not know the density, hence

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 124. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.
3Feynman then notes that this macroscopic argument can be used for any ex-
ternal force! If F is the force on each atom, then in equilibrium the pressure
must vary to balance the external force density Fρ. Hence the change in pres-
sure Fρdx = dP = d(kBTρ) = kBT dρ. If the force is the gradient of a potential
U(x), then picking a local coordinate x along the gradient of U we have −∇U =
F = kBT (dρ/dx)/ρ = kBT (d log ρ)/dx = kBT∇ log ρ. Hence log ρ = C − U/kBT
and ρ ∝ exp(−U/kBT ). Feynman then makes the leap from the ideal gas (with no
internal potential energy) to interacting systems. . .
4At this point in the text, we already know the formula giving the velocity distribu-
tion of a classical system, and we know it is independent of position. But Feynman,
remember, is re-deriving everything from scratch. Also, be warned: ρ in part (b) was
the mass density; here we use it for the probability density.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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the atom’s velocity distribution cannot depend on
z).

(c) If the unknown velocity distribution is ρv(vz),
use it and the Boltzmann height distribution de-
duced in part (b) to write the joint equilibrium prob-
ability distribution ρ(vz, z, t).

Now consider5 the atoms with vertical velocity vz

in a slab of gas of area A between z and z + ∆z at
time t. Their probability density (per unit vertical
velocity) is ρ(vz, z, t)A∆z. After a time ∆t, this
slab will have accelerated to vz − g∆t, and risen a
distance h + vz∆t, so

ρ(vz, z, t) = ρ(vz − g∆t, z + vz∆t, t + ∆t). (1)

(d) Using the fact that ρ(vz, z, t) is time inde-
pendent in equilibrium, write a relation between
∂ρ/∂vz and ∂ρ/∂z. Using your result from part (c),
derive the equilibrium velocity distribution for the
ideal gas.

Feynman then argues that interactions and colli-
sions will not change the velocity distribution.

(e) Simulate an interacting gas in a box with re-
flecting walls, under the influence of gravity. Use
a temperature and a density for which there is a
layer of liquid at the bottom (just like water in a
glass). Plot the height distribution (which should
show clear interaction effects) and the momentum
distribution. Use the latter to determine the tem-
perature; do the interactions indeed not distort the
momentum distribution?

What about the atoms which evaporate from the
fluid? Only the very most energetic atoms can leave
the liquid to become gas molecules. They must,
however, use up every bit of their extra energy (on
average) to depart; their kinetic energy distribution
is precisely the same as that of the liquid.6

Feynman concludes his chapter by pointing out
that the predictions resulting from the classical
Boltzmann distribution, although they describe
many properties well, do not match experiments
on the specific heats of gases, foreshadowing the
need for quantum mechanics.7

5Feynman gives a complicated argument avoiding partial derivatives and gently in-
troducing probability distributions, which becomes cleaner if we just embrace the
math.
6Ignoring quantum mechanics.
7Quantum mechanics is important for the internal vibrations within molecules, which
absorb energy as the gas is heated. Quantum effects are not so important for the
pressure and other properties of gases, which are dominated by the molecular center-
of-mass motions.
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