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Exercises

10.2 Pair distributions and molecular dynam-

ics.1 2 (Computation) ©3

Many scattering experiments measure the correla-
tions between atomic positions. Let our system
have N particles in a volume V .3 The mean density
in a system with atoms at positions xi

ρ(x) =
〈

∑

i

δ(x − xi)
〉

, (10.80)

and the density–density correlation function4

C(x,x′) =
〈

∑

i, j 6=i

δ(x− xi)δ(x
′ − xj)

〉

(1)

are used to define the pair correlation function
g(x,x′):

g(x,x′) =
C(x,x′)

ρ(x)ρ(x′)
=

C(x − x′)

(N/V )2
. (10.82)

Here the last equality is valid for homogeneous sys-
tems like liquids and gases.5

(a) Show analytically from equation 10.80 that ρ(x)
for a homogeneous system is the indeed the average
density N/V . Show that g(x,x′) = g(x − x′) =
g(r), where

g(r) =

〈

V

N2

∑

i, j 6=i

δ(r − rij)

〉

(2)

and rij = xi − xj is the vector separating the po-
sitions of atoms i and j. If the system is homo-
geneous and the atoms are uncorrelated (i.e., an
ideal gas), show that g(r) ≡ 1. If the potential

energy is the sum of pair interactions with poten-
tial E(rij), write the potential energy as an inte-
gral over three-dimensional space r involving N , V ,
g(r), and E(r).

Usually g(r) → 1 as r → ∞; the correlations die
away as the separation grows.

Liquids and gases are also isotropic; the pair cor-
relation function g must be rotation invariant, and
hence can only depend on the distance r = |r|. A
typical molecular dynamics code will have a fast
NeighborLocator routine, which will return the
HalfNeighbor pairs of atoms j < i with |rij | less
than a given cut-off. A histogram of the distances
between these nearby points, suitably rescaled, is
a convenient way of numerically estimating the
pair correlation function. Let the histogram h(rn)
give the number of such pairs in our system with
rn < r < rn + ∆r.

(b) For an isotropic, homogeneous system in three
dimensions, show

g(r) =
2V

N2

h(r)

4πr2 ∆r
. (10.84)

What is the corresponding formula in two dimen-
sions?

Download our molecular dynamics software [10]
from the text web site [129]. In our simulation, we
use the Lennard–Jones potential, in which all pairs
of atoms interact with an energy with a short-range
repulsion ∼ 1/r12 and a long-range (van der Waals)
attraction ∼ 1/r6:

Epair(r) = 4ε

(

(σ

r

)12

−
(σ

r

)6
)

. (10.85)

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 233. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise was developed in collaboration with Neil W. Ashcroft and Christopher
R. Myers.
3We will use periodic boundary conditions, so the edges of the container do not break
the translational symmetry.
4Warning: In the theory of liquids, C is used for another function, the Ornstein–
Zernike direct correlation function.
5The pair correlation function represents the degree to which atomic positions fluc-
tuate together, beyond the clumping implied by the possibly inhomogeneous average
density. For example, three-dimensional crystals have a long-range broken transla-
tional symmetry; ρ(x) will have peaks at the lattice sites even after averaging over
thermal vibrations.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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Lennard–Jones is a reasonable approximation for
the interatomic forces between noble gas atoms like
argon. In our simulation, we choose the length scale
σ and the energy scale ε both equal to one.

(c) Plot the Lennard–Jones pair potential as a func-
tion of r, choosing a vertical scale so that the attrac-
tive well is visible. Where is the minimum-energy
spacing between two atoms? Can you see why the
repulsion is called ‘hard core’?

Gas. We start with a simulated gas, fairly near the
vapor pressure.

(d) Simulate a two-dimensional gas of Lennard–
Jones atoms, at a temperature T = 0.5ε and a den-
sity ρ = 0.05/σ2. Calculate the pair distribution
function for the gas for 0 < r < 4σ. Note the ab-
sence of pairs at close distances. Can you observe
the effects of the attractive well in the potential,
both visually and in the pair correlation function?

In a low-density, high-temperature gas the corre-
lations between atoms primarily involve only two
atoms at once. The interaction energy of a pair of
atoms in our system is Epair(r), so in this limit

gtheory(r) ∝ exp(−E(r)/kBT ). (3)

Since E(r) → 0 and g(r) → 1 as r → ∞, the con-
stant of proportionality should be one.

(e) Compare g(r) from part (d) with gtheory for a
system with density ρ = 0.05/σ2. Do they agree
well? Do they agree even better at higher tempera-
tures or lower densities, where multi-particle inter-
actions are less important?
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Fig. 10.15 Pair distribution function g(r) for a two-
dimensional Lennard–Jones liquid.

Liquid. We now turn to a liquid, at the same tem-
perature as our gas but at a higher density.

(f) Simulate a liquid, at ρ = 0.75/σ2 and T = 0.5.
Note from the animation that each atom in the
two-dimensional simulation has around six nearest-
neighbors, at nearly the minimum-energy distance.
Calculate the pair distribution function. Can you
explain the features you see in terms of nearest-
neighbors and second-nearest neighbors?

(g) If we define the coordination number of a liquid
atom as all those with distances less than the po-
sition of the dip between nearest and next-nearest
neighbors in g(r), what is the mean number of near
neighbors for your two-dimensional liquid?

In most (three-dimensional) simple elemental liq-
uids, the coordination number defined by this cri-
terion is between 11 and 11.5. (The close-packed
crystals have twelve nearest neighbors). The main
exceptions are the group IV elements (carbon,
silicon, germanium, . . . ) where the bonding is
strongly angle dependent and the number of liquid
near neighbors is smaller, around 5.5; their crys-
talline phases have three or four covalently-bonded
neighbors.

Crystal. In a three-dimensional crystal, the atoms
vibrate around their equilibrium lattice positions
(with only rare hops between lattice sites as atoms
exchange with one another or vacancies move
through the crystal). If these vibrations become
large compared to the lattice constant, then surely
the crystal will melt. The Lindemann criterion
notes that for simple crystals, melting usually oc-
curs when the thermal vibrations away from the
lattice positions are about 10% of the interatomic
spacing.

(Note how weird this is. A three-dimensional crys-
tal, billions of atoms across, thermally vibrating
almost enough to melt, still holds its atoms in rigid
registry within fractions of an Angstrom.)

This is not true in two dimensions, where the lat-
tice is not as stiff and thermal fluctuations are more
severe.6 The Lindemann criterion of course also
implies that the typical variation in the nearest-
neighbor separations for three-dimensional crystals
stays much smaller than the lattice constant at the

6The theory of two-dimensional crystals and how they melt has spawned many beau-
tiful theoretical and experimental studies; look for works on the Kosterlitz–Thouless–

Halperin–Nelson–Young transition.
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Exercises 3

melting point. Is this version of the Lindemann
criterion true of two-dimensional crystals?

(h) Simulate a crystal, at T = 0.1 starting from a
hexagonal crystal with interatomic spacing approx-
imating the minimum of the pair potential. Calcu-
late the isotropic spatial average of the pair cor-

relation function.7 By what percentage does the
nearest-neighbor separation fluctuate? Are they
small compared to the lattice constant? Also, can
you identify which neighbors on the hexagonal lat-
tice correspond to the second-nearest-neighbor and
the third-nearest-neighbor peaks in g(r)?

7That is, use the routines you’ve developed for liquids and gases, ignoring the spa-
tially dependent ρ(x) in equation 10.82 and discussed in note 5. This average still
gives the correct potential energy.
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