Exercises

3.4 Pressure computation. ${ }^{12}$ (Computation) (2)

Microscopically, pressure comes from atomic collisions onto a surface. Let us calculate this microscopic pressure for an ideal gas, both analytically and using a molecular dynamics simulation. You may download our molecular dynamics software [10] from the text web site [129].
Run a simulation of the ideal gas in a system with reflective walls. Each time an atom collides with a wall, it undergoes specular reflection, with the parallel momentum components unchanged and the perpendicular momentum component reversed.
(a) Remembering that pressure $P=F / A$ is the force per unit area, and that force $F=\mathrm{d} p / \mathrm{d} t=$ $\left(\sum \Delta P\right) / \Delta t$ is the net rate of momentum per unit time. Suppose a wall of area A at $x=L$ is holding atoms to values $x<L$ inside a box. Write a formula for the pressure in terms of $\rho_{c}\left(p_{x}\right)$, the expected number of collisions at that wall per unit time with incoming momentum p_{x}. (Hint: Check the factors of two, and limits of your integral. Do negative momenta contribute?)
The simulation provides an 'observer', which
records the magnitudes of all impacts on a wall during a given time interval.
(b) Make a histogram of the number of impacts on the wall during an interval Δt with momentum transfer Δp. By what factor must you multiply $\rho_{c}\left(p_{x}\right)$ from part (a) to get this histogram?
Unlike the distribution of momenta in the gas, the probability $\rho_{c}\left(p_{x}\right)$ of a wall collision with momentum p_{x} goes to zero as p_{x} goes to zero; the ideal gas atoms which are not moving do not collide with walls. The density of particles of momentum p_{x} per unit volume per unit momentum is the total density of particles N / V times the probability that a particle will have momentum p_{x} (eqn 3.19):

$$
\begin{equation*}
\frac{N}{V} \frac{1}{\sqrt{2 \pi m k_{B} T}} \exp \left(-\frac{p_{x}^{2}}{2 m k_{B} T}\right) \tag{3.60}
\end{equation*}
$$

(c) In a time Δt, from how far away will will atoms of incoming momentum p_{x} collide with the wall? What should the resulting formula be for $\rho_{c}\left(p_{x}\right)$? Does it agree with your histogram of part (b)? What is your resulting equation for the pressure P? Does it agree with the ideal gas law?

[^0]
[^0]: ${ }^{1}$ From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James P. Sethna, copyright Oxford University Press, 2007, page 54. A pdf of the text is available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the text). Hyperlinks from this exercise into the text will work if the latter PDF is downloaded into the same directory/folder as this PDF.
 ${ }^{2}$ This exercise and the associated software were developed in collaboration with Christopher Myers.

