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Exercises

N.6 A fair split? Number partitioning.1 2 (Com-
puter science, Mathematics, Statistics) ©3
A group of N kids want to split up into two teams
that are evenly matched. If the skill of each player
is measured by an integer, can the kids be split into
two groups such that the sum of the skills in each
group is the same?

This is the number partitioning problem (NPP), a
classic and surprisingly difficult problem in com-
puter science. To be specific, it is NP–complete—
a category of problems for which no known algo-
rithm can guarantee a resolution in a reasonable
time (bounded by a polynomial in their size). If the
skill aj of each kid j is in the range 1 ≤ aJ ≤ 2M ,
the ‘size’ of the NPP is defined as NM . Even the
best algorithms will, for the hardest instances, take
computer time that grows faster than any polyno-
mial in MN , getting exponentially large as the sys-
tem grows.

In this exercise, we shall explore connections be-
tween this numerical problem and the statistical
mechanics of disordered systems. Number parti-
tioning has been termed ‘the easiest hard problem’.
It is genuinely hard numerically; unlike some other
NP–complete problems, there are no good heuris-
tics for solving NPP (i.e., that work much better
than a random search). On the other hand, the
random NPP problem (the ensembles of all pos-
sible combinations of skills aj) has many interest-
ing features that can be understood with relatively
straightforward arguments and analogies. Parts of
the exercise are to be done on the computer; hints
can be found on the computer exercises portion of
the book Web site [8].

We start with the brute-force numerical approach
to solving the problem.

(a) Write a function ExhaustivePartition(S) that
inputs a list S of N integers, exhaustively searches
through the 2N possible partitions into two subsets,
and returns the minimum cost (difference in the
sums). Test your routine on the four sets [5] S1 =

[10, 13, 23, 6, 20], S2 = [6, 4, 9, 14, 12, 3, 15, 15],
S3 = [93, 58, 141, 209, 179, 48, 225, 228], and S4 =
[2474, 1129, 1388, 3752, 821, 2082, 201, 739]. Hint:
S1 has a balanced partition, and S4 has a minu-
mum cost of 48. You may wish to return the signs
of the minimum-cost partition as part of the de-
bugging process.

What properties emerge from studying ensembles
of large partitioning problems? We find a phase
transition. If the range of integers (M digits in base
two) is large and there are relatively few numbers
N to rearrange, it is unlikely that a perfect match
can be found. (A random instance with N = 2 and
M = 10 has a one chance in 210 = 1024 of a perfect
match, because the second integer needs to be equal
to the first.) If M is small and N is large it should
be easy to find a match, because there are so many
rearrangements possible and the sums are confined
to a relatively small number of possible values. It
turns out that it is the ratio κ = M/N that is
the key; for large random systems with M/N > κc

it becomes extremely unlikely that a perfect parti-
tion is possible, while if M/N < κc a fair split is
extremely likely.

(b) Write a function MakeRandomPartitionProb-

lem(N,M) that generates N integers randomly cho-
sen from {1, . . . , 2M}, rejecting lists whose sum
is odd (and hence cannot have perfect parti-
tions). Write a function pPerf(N,M,trials),
which generates trials random lists and calls
ExhaustivePartition on each, returning the frac-
tion pperf that can be partitioned evenly (zero cost).
Plot pperf versus κ = M/N , for N = 3, 5, 7 and 9,
for all integers M with 0 < κ = M/N < 2, using at
least a hundred trials for each case. Does it appear
that there is a phase transition for large systems
where fair partitions go from probable to unlikely?
What value of κc would you estimate as the critical
point?

Should we be calling this a phase transition? It
emerges for large systems; only in the ‘thermody-

1 New exercise supplementing Statistical Mechanics: Entropy, Order Parameters,

and Complexity by James P. Sethna, copyright Oxford University Press, 2007, page 7.
A pdf of the text is available at pages.physics.cornell.edu/sethna/StatMech/ (select
the picture of the text). Hyperlinks from this exercise into the text will work if the
latter PDF is downloaded into the same directory/folder as this PDF.
2This exercise draws heavily from [5, chapter 7].

http://pages.physics.cornell.edu/sethna/StatMech/NewExercises.pdf
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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namic limit’ where N gets large is the transition
sharp. It separates two regions with qualitatively
different behavior. The problem is much like a
spin glass, with two kinds of random variables: the
skill levels of each player aj are fixed, ‘quenched’
random variables for a given random instance of
the problem, and the assignment to teams can be
viewed as spins sj = ±1 that can be varied (‘an-
nealed’ random variables)3 to minimize the cost
C = |∑

j
ajsj |.

(c) Show that the square of the cost C2 is of the
same form as the Hamiltonian for a spin glass,
H =

∑

i,j Jijsisj. What is Jij?

The putative phase transition in the optimization
problem (part (b)) is precisely a zero-temperature
phase transition for this spin-glass Hamiltonian,
separating a phase with zero ground-state energy
from one with non-zero energy in the thermody-
namic limit.

We can understand both the value κc of the
phase transition and the form of pperf(N, M) by
studying the distribution of possible ‘signed’ costs
Es =

∑

j
ajsj . These energies are distributed

over a maximum total range of Emax − Emin =
2

∑N

j=1 aj ≤ 2N 2M (all players playing on the plus
team, through all on the minus team). For the bulk
of the possible team choices {sj}, though, there will
be some cancellation in this sum. The probability
distribution P (E) of these energies for a particular
NPP problem {aj} is not simple, but the average
probability distribution 〈P (E)〉 over the ensemble
of NPP problems can be estimated using the cen-
tral limit theorem. (Remember that the central
limit theorem states that the sum of N random
variables with mean zero and standard deviation σ
converges rapidly to a normal (Gaussian) distribu-
tion of standard deviation

√
Nσ.)

(d) Estimate the mean and variance of a single
term sjaj in the sum, averaging over both the spin
configurations sj and the different NPP problem re-
alizations aj ∈ [1, . . . , 2M ], keeping only the most

important term for large M . (Hint: Approximate
the sum as an integral, or use the explicit formula
∑K

1 k2 = K3/3 + K2/2 + K/6 and keep only the
most important term.) Using the central limit theo-
rem, what is the ensemble-averaged probability dis-
tribution P (E) for a team with N players? Hint:
Here P (E) is non-zero only for even integers E, so
for large N P (E) ≈ (2/

√
2πσ) exp(−E2/2σ2); the

normalization is doubled.

Your answer to part (d) should tell you that the
possible energies are mostly distributed among in-
tegers in a range of size ∼ 2M around zero, up to a
factor that goes as a power of N . The total number
of states explored by a given system is 2N . So, the
expected number of zero-energy states should be
large if N � M , and go to zero rapidly if N � M .
Let us make this more precise.

(e) Assuming that the energies for a specific system
are randomly selected from the ensemble average
P (E), calculate the expected number of zero-energy
states as a function of M and N for large N . What
value of κ = M/N should form the phase boundary
separating likely from unlikely fair partitions? Does
that agree well with your numerical estimate from
part (b)?

The assumption we made in part (e) ignores the
correlations between the different energies due to
the fact that they all share the same step sizes aj

in their random walks. Ignoring these correlations
turns out to be a remarkably good approximation.4

We can use the random-energy approximation to
estimate pperf that you plotted in part (b).

(f) In the random-energy approximation, argue that

pperf = 1 − (1 − P (0))2
N−1

. Approximating (1 −
A/L)L ≈ exp(−A) for large L, show that

pperf(κ, N) ≈ 1 − exp

[

−
√

3

2πN
2−N(κ−κc)

]

. (1)

Rather than plotting the theory curve through each
of your simulations from part (b), we change vari-
ables to x = N(κ − κc) + (1/2) log2 N , where the

3Quenched random variables are fixed terms in the definition of the system, represent-
ing dirt or disorder that was frozen in as the system was formed (say, by quenching
the hot liquid material into cold water, freezing it into a disordered configuration).
Annealed random variables are the degrees of freedom that the system can vary to
explore different configurations and minimize its energy or free energy.
4More precisely, we ignore correlations between the energies of different teams
s = {si}, except for swapping the two teams s → −s. This leads to the N − 1
in the exponent of the exponent for pperf in part (f). Notice that in this approxima-
tion, NPP is a form of the random energy model (REM, exercise N.5), except that
we are interested in states of energy near E = 0, rather than minimum energy states.
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theory curve

pscaling
perf (x) = 1 − exp

[

−
√

3

2π
2−x

]

(2)

is independent of N . If the theory is correct, your
curves should converge to pscaling

perf (x) as N becomes
large

(g) Reusing your simulations from part (b), make a
graph with your values of pperf(x, N) versus x and
pscaling
perf (x). Does the random-energy approximation

explain the data well?

Rigorous results show that this random-energy ap-
proximation gives the correct value of κc. The en-
tropy of zero-cost states below κc, the probabil-
ity distribution of minimum costs above κc (of the
Weibull form, exercise N.4), and the probability
distribution of the k lowest cost states are also cor-
rectly predicted by the random-energy approxima-
tion. It has also been shown that the correlations
between the energies of different partitions vanish

in the large (N, M) limit so long as the energies are
not far into the tails of the distribution, perhaps ex-
plaining the successes of ignoring the correlations.

What does this random-energy approximation im-
ply about the computational difficulty of NPP?
If the energies of different spin configurations (ar-
rangements of kids on teams) were completely ran-
dom and independent, there would be no better
way of finding zero-energy states (fair partitions)
than an exhaustive search of all states. This per-
haps explains why the best algorithms for NPP are
not much better than the exhaustive search you im-
plemented in part (a); even among NP–complete
problems, NPP is unusually unyielding to clever
methods.5 It also lends credibility to the conjecture
in the computer science community that P 6= NP–
complete; any polynomial-time algorithm for NPP
would have to ingeneously make use of the seem-
ingly unimportant correlations between energy lev-
els.

5The computational cost does peak near κ = κc. For small κ � κc it’s relatively
easy to find a good solution, but this is mainly because there are so many solutions;
even random search only needs to sample until it finds one of them. For κ > κc

showing that there is no fair partition becomes slightly easier as κ grows [5, fig 7.3].
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