
Numerically integrating equations of motion

1 Introduction to numerical ODE integration al-
gorithms

Many models of physical processes involve differential equations: the rate at
which some thing varies depends on the current state of the system, and possibly
external variables such as time. Here we explore how to numerically solve these
equations.

The concrete example which we are considering in this module is dynamics
of a pendulum. The angular acceleration of a pendulum bob depends on how
far up the pendulum is pulled. This gives the equation of motion

d2θ

dτ2
= − g

L
sin(θ),

where I have used τ for time, because we are going to use t for a dimensionless
time. In particular if we define t =

√
L/gτ the equation of motion becomes

d2θ

dt2
= − sin(θ).

This is what is known as going to natural units. It is generally a good idea both
for analytic calculations and numerical ones.

To find an approximate solution to this differential equation we discretize
time, and use some finite difference approximation for the derivative. Our choice
of discretization, and our approximation for the derivative will give different
algorithms for solving the equation. For generality, most of the literature on
solving differential equations concentrates on systems of first order differential
equations. We can make our equation of that form by writing it as

dθ

dt
= ω

dω

dt
= − sin(θ).

For the simplest method one uses a constant step size δ. Thus starting from
knowing θ(t) and ω(t) you use a finite difference approximation to calculate
θ(t + δ) and ω(t + δ), then use these to calculate θ(t + 2δ)... More sophisticated
algorithms will use an adaptive step size, where the step is made smaller or

1



larger at different times in order to guarantee a rapid calculation which achieves
a predetermined accuracy.

There are several different conceptual ways to come up with approximations
of the derivatives. One approach is to use the ”mean value theorem” which says
that for a sufficiently well behaved function f , that the slope of the secant line of
f on some interval [t1, t2] is exactly equal to the slope of f at some intermediate
point t̄

f(t2)− f(t1) = (t2 − t1)f ′(t̄).

If we replace t̄ with t1 we get the forward Euler approximation

θ(t + δ) = θ(t) + δω(t)
ω(t + δ) = ω(t)− δ sin[θ(t)].

If we replace t̄ with t2 we get the backward Euler approximation

θ(t + δ) = θ(t) + δω(t + δ)
ω(t + δ) = ω(t)− δ sin[θ(t + δ)].

If we replace t̄ with (t1 + t2)/2 we get the leapfrog approximation

θ(t + δ) = θ(t) + δω(t + δ/2)
ω(t + δ/2) = ω(t− δ/2)− δ sin[θ(t)].

For an algorithm based on the leapfrog method, we would use a different grid
for the angles and the angular velocities. Sometimes this is inconvenient, so
this last equation can be made to look more like the others if we shift all of our
angular frequencies, writing ω̄(t) = ω(t− δ/2). We then have

θ(t + δ) = θ(t) + δω̄(t + δ)
ω̄(t + δ) = ω̄(t)− δ sin[θ(t)]

Neglecting the difference between ω̄ and ω gives us the symplectic Euler approx-
imation,

θ(t + δ) = θ(t) + δω(t + δ)
ω(t + δ) = ω(t)− δ sin[θ(t)].

The forward Euler algorithm is known as explicit, meaning that the state
variables at a later time are directly calculated from the prior state variables.
The backward Euler algorithm is implicit, meaning you need to solve an equation
(in this case a transcendental equation) to get the later state variables. The
symplectic Euler algoritm is semi-implicit. In this case since the relationship
between dθ/dt and ω is linear, you can solve the equation analytically, so the
sympectic Euler algorithm is no harder to implement than the forward Euler
algorithm. Explicit algorithms tend to be less stable than implicit ones. We
will discuss this a bit in section 3.

A word of caution: you typically do not want to use one of these simple
integration algorithms for any real calculations. There are much better ones.

2



2 Accuracy – higher order methods

One thing you want your algorithm to do is produce accurate results. You want
the difference between your approximate solution and the exact solution to be
small. Clearly making δ smaller increases the accuracy. On the other hand,
smaller δ means that the calculation takes longer, and that more round-off error
is accumulated at each step. To evaluate how good an algorithm is for your
purposes you want to know how quickly the accuracy increases as you decrease
the step size. The standard way to express this is with big oh notation. We say
f(δ) = O(δn) as δ → 0 if there exists numbers A and ε such that for all δ < ε
one finds f(δ) ≤ Aδn.

One can estimate the accuracy of the algorithms given above by making
use of Taylor’s theorem, which including the error estimates says f(x + δ) =
f(x) + δf ′(x) + · · · + δn/n!f (n)(x) + O(δn+1). To evaluate the forward Euler
algorithm we note

θ(t + δ) = θ(t) + δθ′(t) +O(δ2)
= θ(t) + δω(t) +O(δ2)

ω(t + δ) = ω(t) + δω′(t) +O(δ2)
= ω(t)− sin[θ(t)] +O(δ2).

so the error accumulated in each time step is O(δ2). Since the number of time
steps scales as 1/δ, the total error in this method is O(δ). That is, if you
decrease δ the error should decrease linearly.

Similar analysis on the backward Euler and symplectic Euler reveals they
are also O(δ) methods. On the other hand, the leapfrog method is O(δ2):

θ(t + δ) = θ(t) + δθ′(t) + (δ2/2)θ′′(t) +O(δ3)
= θ(t) + δ [ω(t) + (δ/2)ω′(t)] +O(δ3)
= θ(t) + δω(t + δ/2) +O(δ3).

One general strategy for building up higher order methods is to add extra
function evaluations. For illustration, imagine we have a differential equation

d2f

dt2
= G(f),

and we want to step from fi = f(t) to ff = f(t + δ). Well we begin with an
Euler step to δ/2, defining

f1 = f0 + (δ/2)G(f0).

We then introduce two arbitrary coefficients a and b, and guess

f trial
f = f0 + δ [aG(f0) + bG(f1)] .

3



One then must choose a and b to make this as accurate as possible. Carrying
out the above analysis, we find

f trial
f = f(0) + aδf ′(0) + bδG [f(0) + (δ/2)f ′(0)]

= f(0) + aδf ′(0) + bδG[f(0)] +
bδ2

2
f ′(0)G′[f(0)] +O(δ3)

= f0 + (a + b)δf ′(0) +
bδ2

2
f ′′(0) +O(δ3).

This will be an order δ3 error in each step if we take a = 0 and b = 1, yielding
an O(δ2) method. This is called the midpoint method (and it clearly has a
connection with the leapfrog approximation). We can make an even higher
order method by taking more than one intermediate time step and following a
similar procedure. A typical higher order method is the fourth order explicit
Runge-Kutta method (RK4). This is often implemented with an adaptive step
size.

3 Stability and fidelity

Sometimes we want to really push our algorithms. For example we might want
to integrate to very long times. At fixed step size the errors should grow linearly
with time for large time. This could be fixed by decreasing the step size, but
at the expense of drastically increasing computation time. Another fix is to use
an algorithm for which the behavior remains qualitative correct even when the
accuracy is poor.

Here is where we see a difference in the three first order methods that we
presented. The forward Euler algorithm is simply unstable. At short times it
stays near the exact solution but it slowly drifts off. At long times the energy
grows. A crude way to see this is to note that there is effectively a delay
between when a force is applied and when it causes and acceleration. One can
directly analyze the finite difference equaitons, but it is simpler to think about
an analogous differential equation, such as

d2x

dt2
=

1
m

F [x(t− ε)].

Assuming that ε is small, this can be approximated by

d2x

dt2
=

1
m

F [x(t)]− ε

m

dx

dt

dF

dx
,

and we effectively have a velocity dependent force. If we are near a potential
minimum we should have dF/dx < 0, which implies that if ε > 0 the velocity
dependent force tries to increase the velocity. This is clearly unstable. One says
that near a potential energy minimum the numerical algorithm has added an
antidamping term, and the energy tends to grow with time. The same argument
says that the backward Euler method (where effectively ε < 0) is stable. The

4



backward algorithm has adds a damping term, and the energy tends to decrease
with time.

This result is clearly generic. Implicit methods tend to be unstable, while
explicit methods tend to introduce damping.

As you might guess, the symplectic Euler algorithm falls in between. The
energy neither grows nor drops by too much. Below it will be explained why
it has this behavior. It is important, however, to point out that depending on
the problem at hand, the behavior of the symplectic Euler algorithm may not
be any better than the others. It is no more accurate than the other Euler
algorithms. [For example, the period which it predicts for the pendulum will be
no better than the period from the other algorithms – perhaps it might even be
worse.] On the other hand there are times where it is useful to use a symplectic
integrator. One example is in Molecular Dynamic simulations. If you have
ever done any hydrodynamics, you know that many of the properties of fluids
depend only on the presence of conservation laws. The symplectic algorithms
incorporates such conservation laws.

What makes gives the symplectic Euler algorithm this property is that it
preserves the Poisson bracket, which mathematically is a symplectic form. That
is why we call the symplectic Euler algorithm as symplectic integrator. Re-
call that given conjugate variables θ and ω, the Poisson bracket, defined by
{a, b}θω = (∂a/∂θ)(∂b/∂ω)− (∂a/∂ω)(∂b/∂θ), has essentially the same proper-
ties as the quantum mechanical commutator. The fundamental Poisson bracket
is {θ, ω}θω = 1. If a mapping preserves the fundamental Poisson bracket it will
preserve all Poisson brackets. Let θ0 and ω0 be time t = 0 values of the state
variables, and let θ1 and ω1 be the variables after one time step of the symplectic
Euler algorithm. Straightforward algebra reveals {θ1, ω1}θ0ω0 = 1. The same
algebra shows that neither the forward nor backward Euler algorithms preserve
the Poisson bracket.

A mapping which preserves Poisson brackets is described as Canonical.
Thinking of it as a map of phase space onto itself, a Canonical transforma-
tion preserves areas. Conceptually, a useful way of thinking of a Canonical
transformation is that there is always some Hamiltonian which generates equa-
tions of motion which will produce any given Canonical transformation. Thus
a symplectic algorithm can be thought of as providing the exact solution to the
motion of a system whose Hamiltonian approximates the one you are interested
in. As you make the step size smaller, the two Hamiltonians become closer.

A natural question at this point is how one produces higher order symplectic
integrators. One approach is to use the fact that composition of Canonical
transformations creates another Canonical transform. Imagine, as in the present
case, that the Hamiltonian you are interested in has the form H = T + V , with
kinetic energy T and potential energy V . We let H1 = T and H2 = V be
Hamiltonians for fictitious systems. We can approximation the time evolution
from time t to t+ δ, by first time evolving by time δ using Hamiltonian H1, and
then time δ using Hamiltonian H2. This is the symplectic Euler method. We
can produce higher order methods by interleaving more time evolution steps.
For example, evolving by H1 for time δ/2, then H2 for time δ, then H1 for time

5



δ/2, gives the Verlet algorithm – which is second order.

4 Other ODE integration algorithms

There are a few other ODE integration strategies which are worth mentioning.

• Multistep methods: Instead of just using the value of the state variables
at time t to calculate the state at time t + δ, multistep methods use the
value of the state at several previous times (for example using values at
time t and t− δ).

• Multiderivative methods: If you can analytically calculate the deriva-
tives of the forces, you can use this information in multiderivative methods.

• Predictor-Corrector methods: These first use a prediction step to
approximate the value of the state variables at time t + δ. They then use
this value to refine the guess. Typically predictor-correlators are multistep
methods. Apparently predictor-corrector methods have fallen out of favor
lately.

• Extrapolation methods: These are conceptually a little different. Es-
sentially they perform the calculation using several different step sizes,
then use an extrapolation scheme to estimate what would happen if you
took h to zero.

Most modern multipurpose ODE solvers use either some versions of Runge-
Kutta or extrapolation methods. The scipy ODE integrator defaults to a
predictor-corrector method (Adams), but also supports an implicit multistep
method (Gears). The latter is very stable, but not necessarily as efficient. It is
best used for ”stiff” problems, meaning those with multiple time-scales which
can give other integrators trouble.

5 Further Study

A good exercise to bring this all together is to apply the different Euler algo-
rithms to the simple harmonic oscillator. You can actually analytically calculate
what the position and velocity of the oscillator will be after N timesteps (hint:
you will need to diagonalize a 2-by-2 matrix).

6


