Pendulum and Walker

 Physics 7682 ／CIS 6229
Science Goals：

橉 Solving Differential Equations
蛙 Basic ideas of ODE solvers
＊Accuracy，Stability，Fidelity
垭 Nonlinear Dynamics Concepts
粼 Phase Plane Portraits
＊ 粼 Poincare Sections
蜪 Period Doubling
期 Chaos
粦 Models of locomotion

Graphics，functions as objects，manipulating data sets

Solving Differential Equations

- "Easy task"
- Excellent off-the-shelf algorithms and functions

Basic Idea:

convert differential equation into difference equation

$$
\frac{d f}{d t}=-f \quad \frac{f\left(t_{i+1}\right)-f\left(t_{i}\right)}{\delta t} \underset{\uparrow}{\approx} \frac{d f}{d t}\left(t_{i}\right)=-f\left(t_{i}\right)
$$

Different algorithms use different approximations:
Pendulum exercise explores choices
"Order" of algorithm: how accuracy scales with timestep

Not all first order algorithms are created equal

(Understand by looking at phase space plots)

General Procedure

I. Convert to set of first order equations

$$
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{L} \sin (\theta)
$$

$$
\begin{aligned}
& \frac{d \theta}{d t}=\omega \\
& \frac{d \omega}{d t}=-\frac{g}{L} \sin (\theta)
\end{aligned}
$$

2. Choose units

$$
\begin{aligned}
& \frac{d \theta}{d t}=\omega \\
& \frac{d \omega}{d t}=-\sin (\theta)
\end{aligned}
$$

Using Scipy's integrator

```
def PendulumDerivArray(vars,t):
    theta,omega=vars # unpack vars
    return numpy.array([omega,-sin(theta)])
times=arange(0,100,0.1)
InitialConditions=[3,0]
trajectory=odeint(PendulumDerivArray,InitialConditions,times)
```

Returns an array of the form [[theta 0, omega 0$], \ldots$

```
array([[3,0],[2.9929382,-0.0143531],..])
```

plot theta, and omega vs time with

Interesting construction: pass a function to another function. Functions are objects. Functions can even return functions:
smartodeint is defined in pendulum.py is an integrator which returns functions.

Double Pendulum

- Classic example of chaotic system
- sensitive dependance on initial conditions
- Trajectories are in 5 dimensional space

- how to deal with all that data!

Poincare Sections

- Trajectories in 5D
- Translational invariance in time: 4D phase space suffices
- Conservation of Energy: trajectories live on 3D manifold
- Poincare section: look at θ_{2} and ω_{2} on this manifold when $\theta_{1}=0$

Walker

- Simplified model of bipedal motion:

Double pendulum: but pivot point switches from end of one "leg" to other whenever there is a "heelstrike"

Walker

- Remarkable: passive model -- can walk
- Nontrivial
"phase diagram"
- Chaos, stable/unstable limit cycles, period doubling (limping)

- Biological significance: Evolution of geometry of legs?

