Random Universality:

Random Matrix Theory and Extreme Value Statistics

Sethna / Myers Computational Methods in Nonlinear Science

Universality: a surprising congruence or sharing of properties or characteristics between seemingly unrelated systems, usually attributed to deep underlying truths

• *Central Limit Theorem*: The average of several random variables always has the same (normal or Gaussian) universal distribution.

• *Extreme value statistics*: The largest of several random variables always has one of a few (Gumbel, Weibull, Fréchet) universal forms

• *Random Matrix Theory*: large matrices, wherever they come from, have eigenvalues whose spacings have one of a few universal distributions.

Gumbel Distribution Extreme values: Biggest of Bunch

Yearly values						Five year maxima	
4	144	144	100	784	\rightarrow	784	
256	81	324	441	196	\rightarrow	441	
625	361	1	841	4	\rightarrow	841	
25	900	100	4	576	\rightarrow	900	

Mississippi water level	\rightarrow	Dike height for		
		current administration		
Maximum cost of stock	\rightarrow	Cost of 5 year stock option		
October rain level	\rightarrow	Crop insurance cost		

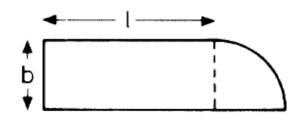
Probability distributions for maximum *X* all have Gumbel distribution $\rho(X) = e^{-(x+e^{-X})}$

Random Matrix Theory Eigenvalues of Large Matrices

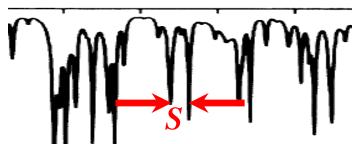
Eigenvalue λ , **eigenvector** v of a matrix M $M \cdot v = \lambda v$ Directions which stretch or shrink, but don't rotate

(Directions which stretch or shrink, but don't rotate)

Quantum energy states of atoms, nuclei Mechanics: moments of inertia Waves, drum vibrations: $\partial^2 h/\partial t^2 = c^2 \nabla^2 h$ standing wave $h = f(x) \cos \omega t$ $-\omega^2 f = c^2 \nabla^2 f = M f$ $\sqrt{-Eigenvalues} = resonant$ frequencies



Irregular drum, resonant absorption



Splittings S have *level repulsion* Stöckmann and Stein, PRL 64, 2215 (1990)

