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Exercises

2.5 Generating random walks.1 2 (Computa-
tion) ©3
One can efficiently generate and analyze random
walks on the computer.

(a) Write a routine to generate an N-step random
walk in d dimensions, with each step uniformly dis-
tributed in the range (−1/2, 1/2) in each dimen-
sion. (Generate the steps first as an N × d array,
then do a cumulative sum.) Plot xt versus t for a
few 10 000-step random walks. Plot x versus y for a
few two-dimensional random walks, with N = 10,
1000, and 100 000. (Try to keep the aspect ratio
of the XY plot equal to one.) Does multiplying the
number of steps by one hundred roughly increase the
net distance by ten?

Fig. 2.10 Emergent rotational symmetry. End-
points of many random walks, with one step (cen-
tral square of bright dots) and ten steps (surround-
ing pattern). Even though the individual steps in a

random walk break rotational symmetry (the steps are
longer along the diagonals), multi-step random walks
are spherically symmetric. The rotational symmetry
emerges as the number of steps grows.

Each random walk is different and unpredictable,
but the ensemble of random walks has elegant, pre-
dictable properties.

(b) Write a routine to calculate the endpoints of W
random walks with N steps each in d dimensions.
Do a scatter plot of the endpoints of 10 000 ran-
dom walks with N = 1 and 10, superimposed on
the same plot. Notice that the longer random walks
are distributed in a circularly symmetric pattern,
even though the single step random walk N = 1 has
a square probability distribution (Fig. 2.10).

This is an emergent symmetry; even though the
walker steps longer distances along the diagonals
of a square, a random walk several steps long has
nearly perfect rotational symmetry.3

The most useful property of random walks is the
central limit theorem. The endpoints of an ensem-
ble of N step one-dimensional random walks with
root-mean-square (RMS) step-size a has a Gaus-
sian or normal probability distribution as N → ∞,

ρ(x) =
1√
2πσ

exp(−x2/2σ2), (2.35)

with σ =
√

Na.

(c) Calculate the RMS step-size a for one-
dimensional steps uniformly distributed in
(−1/2, 1/2). Write a routine that plots a his-
togram of the endpoints of W one-dimensional
random walks with N steps and 50 bins, along with
the prediction of eqn 2.35 for x in (−3σ, 3σ). Do
a histogram with W = 10 000 and N = 1, 2, 3,

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 28. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.
3The square asymmetry is an irrelevant perturbation on long length and time scales
(Chapter 12). Had we kept terms up to fourth order in gradients in the diffusion
equation ∂ρ/∂t = D∇2ρ + E∇2

(

∇
2ρ

)

+ F
(

∂4ρ/∂x4 + ∂4ρ/∂y4
)

, then F is square
symmetric but not isotropic. It will have a typical size ∆t/a4 , so is tiny on scales
large compared to a.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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and 5. How quickly does the Gaussian distribution become a good approximation to the random walk?
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