Biomolecular reaction networks: gene regulation & the Repressilator Phys 682/ CIS 629: Computational Methods for Nonlinear Systems 11111111

Processing information to coordinate activity

regulatory & signaling networks as information processing systems coordinating the processing of matter and energy

Stochastic cells: simple dimerization reaction

- simple dimerization reaction
 - homodimerization: $M+M \leftrightarrow D$
 - (as distinct from heterodimerization: A+B \leftrightarrow AB)
 - introduce Petri net representation
 - places (circles): molecular species
 - transitions (rectangles): chemical reactions, parameterized by rate constants
 - arcs (directed segments): stoichiometric weights
- compare stochastic and deterministic simulations
 - deterministic
 - ▶ dy/dt = f(y; kb, ku); y = (M, D)
 - stochastic
 - Gillespie algorithm

Petri net for M+M \leftrightarrow D

Stochastic vs. deterministic simulation

Gillespie algorithm

- Gillespie's "Direct Method", a.k.a. continuous time Monte Carlo, or the Bortz-Kalos-Lebowitz algorithm
- a stochastic method for simulating reaction dynamics
 - pick at random a reaction to occur next, and a time at which it will occur (consistent with reaction rates)

Petri net for $M+M \leftrightarrow D$

Next reaction drawn uniformly from weighted rates Next reaction time t_{wait} drawn from probability distribution $\rho(t) = \Gamma exp(-\Gamma t)$

The Repressilator

- Repressilator
 - Elowitz & Leibler, Nature 403, 335-338 (2000)
 - Repressor Oscillator
 - engineered synthetic system encoded on a plasmid (introduced into E. coli)
 - oscillatory mRNA/protein dynamics from mutually repressing proteins
 - TetR inhibits λ c1 inhibits Lacl inhibits
 TetR (rock-paper-scissors)
 - paper describes both experimental system and mathematical models
 - ODE-based model
 - stochastic, reaction-based model

The Repressilator reaction network

P_Ltet01

Noise in the Repressilator

• shot noise

- fluctuations due to fact that chemical numbers are discrete and potentially small
- telegraph noise
 - fluctuations due to fact that some states (e.g., promoter bound by protein) are either on or off
- can scale parameters in model to accentuate or diminish different types of noise

mRNA

protein

Stochastic/Deterministic Repressilators: the use of inheritance

- Inheritance allows for the definition of families of related classes, distinguished from one another by degrees of specialization
 - base class / superclass: more generic; derived class / subclass: more specialized
- Inheritance also allows for code reuse (common behavior can be defined in the superclass)

class Repressilator:

```
# code to define chemicals & reactions
def __init__(self, ...):  # initialize a Repressilator
def AddChemical(self, chemical):  # add a chemical
def AddReaction(self, reaction):  # add a reaction
```

```
class StochasticRepressilator (Repressilator):
```

```
def ComputeReactionRates(self):
```

compute instantaneous rates for Gillespie alg. def Step(self, dtmax):

implement Gillespie alg. for time up to dtmax
def Run(self, tmax, delta_t):

run Gillespie steps for time up to tmax

```
class DeterministicRepressilator (Repressilator):
```

```
def dcdt(self, c, t):
```

```
# return right-hand-side for ODE integration
def Run(self, tmax, dt):
```

```
# integrate ODE for time up to tmax
```