
 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

Exercises

?? Walker.1 2 (Computation) ©4

Reading: Mariano Garcia, Anindya Chatterjee,
Andy Ruina, and Michael Coleman, ‘The Simplest
Walking Model: Stability, Complexity, and Scal-
ing’ Journal of Biomechanical Engineering, Trans-
actions of the ASME 120, 281-288 (1998).

In this exercise, we examine the simplest model of
human walking. We will solve a mechanical model
with two legs that, purely through their swinging
through air and striking the ground, exhibit a sta-
ble periodic pacing motion down a ramp. The de-
scription, derivation, and motivation for the model
are described in the reprint above (available on the
book web site [8]). We confine ourselves here to
guiding you through building this simulation.

The two legs in this problem swing from a common
body, with position BodyPos. One of the legs is im-
planted in the ground at StanceFootPos and that
end cannot move. The other leg’s free end is at
SwingFootPos, and can swing freely, until it strikes
the ground (‘heelstrike’, defined below), at which
time the two legs exchange roles, and the former
stance foot can swing. We solve Newton’s laws for
the legs between heelstrikes.

The angle of the stance leg with respect to vertical
is θ and the angle between the two legs is φ (Fig. 1
in the reprint). The heel-strike condition for both
legs to be touching the ground, thus, is φ− 2θ = 0.

How will we stop Newton’s laws at the heelstrike?
Our differential equation solvers will integrate for-
ward to a fixed final time, but how do we trick them
to stop at a fixed final value? The trick is to wait
until we are slightly past heel-strike, change vari-
ables from time t to c = φ − 2θ, and integrate the

new equations

dθ/dc = (dθ/dt)/(dc/dt) (??)

dφ/dc = (dφ/dt)/(dc/dt) (1)

dt/dc = 1/(dc/dt)

from the current value of c to c = 0.3

Let us begin by thinking about the case of the pen-
dulum: how would we efficiently measure the pe-
riod? If we start the pendulum at rest, and measure
the time it takes to cross θ = 0, that is one quarter
of the period. Let us overshoot and then backtrack
to θ = 0.

(a) As in Exercise 3.12, define dydt(y,t) for the
pendulum, where y = [θ, θ̇], and define dzdc(z,c)
for c = θ, z = [θ, θ̇, t]. Start the pendulum at rest
at a range of initial angles θ0 between zero and π;
use the ODE solver provided to integrate forward in
time in steps of δ = 0.1 until θ < 0. Then run θ to
the zero crossing using z, and find the value of tc

at the zero crossing. Plot the period 4tc versus θ0.
What happens at θ0 = π?

Newton’s equations of motion for our walker are
given by eqns (1) and (2) in the reprint.

(b) Set up a file defining a class Walker. For now,
it should know its geometry (leg length L, ramp
slope γ, current stance foot position (started at
zero), and current θ, θ̇, φ, and φ̇). Start by giving it
two member functions, dydt and dzdc. Each mem-
ber function should unpack the vector into θ, θ̇, φ, φ̇
(and t for z), calculate the derivative for each,
and return the appropriate vector. Neither func-
tion needs to look at or change the current state
of the walker. Finally, write functions GetStat-
eVector which retrieves y from the current state of
the walker, and SetStateVector(y) which sets the
walker to the current state y.

We will be changing between animations and plots
in developing, debugging, and exploring our walker.

1 New exercise supplementing Statistical Mechanics: Entropy, Order Parame-

ters, and Complexity by James P. Sethna, copyright Oxford University Press, 2007,
page ??. A pdf of the text is available at pages.physics.cornell.edu/sethna/StatMech/
(select the picture of the text). Hyperlinks from this exercise into the text will work
if the latter PDF is downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.
3Another method is to interpolate between existing time-points, but it is important
to do so with appropriate accuracy.

http://pages.physics.cornell.edu/sethna/StatMech/NewExercises.pdf
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf

 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

2

Let us set up some of these tools now.

(c) Plotting trajectories. We will use the solver
to find y(t) using dydt, as follows. Let us use ini-
tial conditions that approximately agree with those
used in Fig. 2 of the reprint: start with γ = 0.009,
θ0 = 0.2, θ̇0 = −0.2, φ = 0.4001, and φ̇ = 0. Cal-
culate θ and φ at points t with intervals dt = 0.1
from t = 0 to t = 4 (these are just components
of y). Plot these: they should agree approximately
with the plot in Fig. 2 of the reprint. Also plot
c(t) = φ − 2θ.

Next, check your function dzdc. The initial con-
dition we chose is just past the last collision, so c
starts at c0 = φ−2θ = 0.0001. Pick a final value c1

from your plot just below the first maximum. Use
your solver to find z(c), and again plot θ, φ, and c
versus t, if possible on the same graph as the values
found from y(t). The two methods—solving using
t and c—should agree.

(d) Animation. Animate your walker, using the
tools provided in Exercise 3.12. You will want to
add member functions to your Walker GetBodyPos
and GetSwingFootPos (that compute the body posi-
tion and swing foot position using StanceFootPos,
θ, and φ), along with GetStanceFootPos (for com-
pleteness). You will want a class WalkerDisplay,
with

• A constructor with a Walker argument w, which
stores w and extracts from it the initial configu-
ration of the walker.

• An update function, which re-reads the current
state from the walker and displays it. It should
draw the stance leg a different color from the
swing leg.

Find y(t) for a reasonable length of time T , and
then run the animation—set the current state vec-
tor, update the display, repeat for the next time
step. It should swing around in an entertaining
way.

Now, let us figure out how to stop at the end of a
step. You can see from your plot of part (c) that the
collision condition c(t) = φ− 2θ = 0 occurs once at
mid-step (when the swing foot ‘scuffs’, briefly going
underground), and again at the end of a step (the
‘heelstrike’).4

This means that during the first part of the trajec-
tory the swing foot is beneath the surface of the
ramp! In more complicated models, this unphys-
ical behavior is avoided through the introduction
of knees, ankles, or side-to-side rocking (see the
reprint).

(e) Step. Add a member function
Step(tinitial, tfinal, dt) to Walker. Step will move
the current swing leg forward until either tfinal or
heelstrike, whichever comes first, and returns the
time taken. As in the pendulum, Step will creep for-
ward in time increments dt, and when it overshoots
it will change variables to c and integrate backward
to the heelstrike condition. In particular,

• Integrate forward in time in tiny steps dt, to a
time tf which is the smaller of t + dt and tfinal,
and update the state of the walker

• If c(t − dt) < 0 and c(t) > 0, use the change of
variables in eqn ?? to integrate backward in time
until c = 0 (the heelstrike), update the state of
the walker and return the final time t(c = 0).

• If no heelstrike occurs before tfinal, return nothing
(implying final time is tf).

We now need to include the special feature of this
subject area: the exchange of dynamics at the point
of impact. At the heelstrike, the impulse as the
swing foot abruptly hits the ground changes the
values of the velocities of the two legs. This im-
pulse, plus the exchange of roles of the swing and
stance legs, are given in eqn (4) of the reprint.

(f) Heelstrike.

(1) Add to the class Walker a member function Ex-
ecuteHeelstrike(), which changes the four state
variables in the walker according to eqn (4) of
the reprint.

(2) Just after the heelstrike, c is near zero, but
likely will be a small positive or negative value
due to rounding errors. If it is positive there
is no problem, but if it is negative you will im-
mediately trigger another heelstrike! You can
set a flag to keep track of whether you are just
before or after a heelstrike, but we recommend
instead just increasing φ by −2c after Execute-
Heelstrike to ensure that φ − 2θ is positive.
(Print an error message if −c > 10−10, so you

4The height of the swing foot above the ground is L(cos(θ) − cos(φ − θ)), which is
zero if φ = 2θ. It is also zero for φ = 0: the scuff occurs in the small region between
the zero crossings of φ and c. To avoid this unphysical subterranean scuffing, more
elaborate models use knees and ankles. . .

 Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 --

Exercises 3

will know that this rounding-up is not causing
significant accuracy problems.)

(3) Write a function Walk, that successively takes
steps and executes heel strikes. Animate your
walker, and debug it using the parameters from
part (c).

The attractor of a dynamical system represents its
behavior after a long time has passed. For our sys-
tem, a steady walking stride is represented by a
periodic cycle through the space of θ, φ, θ̇ and φ̇.
It is natural to focus our attention once per step,
after each heelstrike: a steady stride then becomes
a fixed-point under the mapping which moves for-
ward one step. We cannot directly visualize this
four-dimensional space, but we can plot one vari-
able θ and look to see whether it settles down to a
fixed-point, at various values of the slope γ. Fig-
ure 6 of the reprint shows precisely this plot: the
behavior of θ(γ) just after the heelstrike after many
steps have been taken.

(g) Bifurcation diagram and period-

doubling. Duplicate this period-doubling bifur-
cation diagram. The initial conditions are tricky
(for lots of possible starting states, the walker
goes nuts): we have found by trial and error that
the initial condition θ0 = 0.235, θ̇0 = −0.23,

φ = 0.475, and φ̇ = −0.026 gets it walking for
0.01 < γ < 0.019. Run for ntransient steps, then
record for ncycles steps, plotting θ just after each
heelstrike. You will need to throw away a few tens
of steps to get a good plot.

The walker has a stable walking stride only for
γ < γ1 ≈ 0.15: it then starts limping (short-long,
short-long, repeating after a period of two steps).
Qualitative changes like this in the behavior of dy-
namical systems as parameters are tuned are called
bifurcations: notice the attractor forks open or bi-
furcates at γ1. This period-two cycle continues un-
til a larger slope γ2, where it then goes into a period
four cycle. This period doubling repeats in a geo-
metrical series, until at γ∞ the walker goes into
a chaotic motion. This is known as the period-
doubling route to chaos: many different systems
exhibit precisely this same sequence of bifurcations:
see Exercise 12.9.

(h) Animating Chaos. Run your walker in the
chaotic region. Is the irregularity in the steps strik-
ing?

In most cases, the chaos in dynamical systems is
rather subtle: not a tornado, but more of a gentle,
irregular eddy.

	Exercises
	Walker

