NP-completeness, computational complexity, and phase transitions: kSAT and Number Partitioning
Phys 7682 / CIS 6229: Computational Methods for Nonlinear Systems

- Computational complexity
- study of how resources required to solve a problem (e.g., CPU time, memory) scale with the size of the problem
- e.g., polynomial time algorithm ($\mathrm{t} \sim \mathrm{N} \log \mathrm{N}, \mathrm{t} \sim \mathrm{N}^{2}$) vs. exponential time algorithm ($t \sim 2^{N}, t \sim e^{N}$)
- Complexity classes
- P: set of problems solvable in time polynomial in problem size on a deterministic sequential machine
- NP (non-deterministic polynomial): set of problems for which a solution can be verified in polynomial time
- NP-Complete: set of problems that are in NP, and are NP-hard (i.e., that every other problem in NP is reducible to it in polynomial time)
- a polynomial time algorithm to solve one NP-complete problem would constitute a polynomial time algorithm to solve all of them
- no known polynomial time algorithms for NP-complete problems
- exponential runtimes consider worst case scenario; increasing interest in typical case complexity

NP-complete problems

- Thousands of problems proven to be NP-complete (see, e.g., Garey and Johnson, Computers and Intractability, or Skiena, The
$\left(X_{1} \vee X_{2} \vee-X_{4}\right) \wedge$
$\left(X_{2} \vee-X_{3} \vee-X_{5}\right) \wedge$ $\left(X_{3} \vee X_{4} \vee X_{5}\right) \wedge$
$\left(X_{4} \vee-X_{8} \vee X_{N}\right)$ Algorithm Design Manual)
- typically phrased as "decision problems" with yes/no answer
- Satisfiability (SAT): given a set U of boolean variables, and a set of clauses C over U, is there a satisfying truth assignment for C ?
- Partitioning: given a finite set A and a size $s(a) \in Z^{+}$for each $a \in$ A, is there a subset $A^{\prime} \subseteq A$ such that $\sum_{a \in A^{\prime}} S(a)=\sum_{a \in A-A^{\prime}} S(a)$?
- Traveling Salesman: given a set C of m cities, distance $\mathrm{d}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}\right) \in \mathrm{Z}^{+}$ for each pair of cities $\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}} \in \mathrm{C}$, and a positive integer B , is there a tour of C having length B or less?
- Graph K-colorability: given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and a positive integer $\mathrm{K} \leq|\mathrm{V}|$, is G K-colorable, i.e., does there exist a function $\mathrm{f}: \mathrm{V} \rightarrow\{\mathrm{I}, 2, \ldots, \mathrm{~K}\}$ such that $\mathrm{f}(\mathrm{u}) \neq \mathrm{f}(\mathrm{v})$ whenever $\{\mathrm{u}, \mathrm{v}\} \in \mathrm{E}$?
- Sequence Niche: given a sequence $T \in\{0, I\}^{L}$, a set of sequences $C_{i} \in$ $\{0, I\}^{L}$ for $i=I, . ., N$ and a positive integer $P \leq L$, is there a sequence $s \in$ $\{0, I\}^{L}$ such that $|s-T| \leq P$ and $\left|s-C_{i}\right|>P$ for all $i=I, . ., N$?

kSAT

- SAT (logical satisfiability)
- given a set of logical clauses in conjunctive normal form (CNF) over a set of boolean variables, is there a variable assignment that satisfies all clauses?
- kSAT
- restrict all clauses to length k
- NP-complete for all $k \geq 3$
- in P for $\mathrm{k}=2$
- 2^{N} possible assignments for N variables
- exhaustive enumeration only an option for very small systems
$\left(x_{1} \vee x_{2} \vee-x_{4}\right) \wedge$
$\left(x_{2} \vee-x_{3} \vee-x_{5}\right) \wedge$ $\left(x_{3} \vee x_{4} \vee x_{5}\right) \wedge$...
$\left(x_{4} \vee-x_{8} \vee x_{N}\right)$
k variables per clause,
N variables total
$\wedge=A N D$,
$v=O R$,
- = NOT,
$\mathrm{x}_{\mathrm{i}}=$ True or False

Some algorithms for kSAT

- Davis-Putnam (+ modifications)
- complete: can determine whether or not there is a solution for any instance
- recursive: set a variable, eliminate resolved clauses, call itself on reduced problem
- either assignment or contradiction is found
- backtrack if contradiction is found
- lots of heuristics (variable ordering, MOMS, random restarts) to prune the exponential search tree
- WalkSAT
- randomly flips variables in unsatisfied clauses
- incomplete: cannot determine that there is no solution
- Survey Propagation (SP)
- based on "cavity method" developed to study the statistical mechanics of spin glasses
- fast, complicated, and incomplete

```
( x1\vee x < \vee - - x ) ^
( }\mp@subsup{x}{2}{}\vee-\mp@subsup{x}{3}{}\vee-\mp@subsup{x}{5}{\prime})
( }\mp@subsup{x}{3}{}\vee \mp@subsup{x}{4}{}\vee \mp@subsup{x}{5}{\prime})
..
( }\mp@subsup{x}{4}{}\vee-\mp@subsup{x}{8}{\prime}\vee\mp@subsup{x}{N}{\prime}
```

$$
\begin{aligned}
& \wedge=\text { AND }, \\
& \vee=\text { OR, } \\
& -=\text { NOT, } \\
& x_{i}=\text { True or False }
\end{aligned}
$$

Phase transitions in random SAT problems

Figure 1.1: Solving 3SAT instances.

solving 3SAT problems gets hard near the SATUNSAT transition
(\# DP calls = \# of recursive calls in DavisPutnam algorithm)

Kirkpatrick and Selman (200I)

3-SAT

Monasson et al. (1999)

2+p-SAT

Mézard (2003)
fragmentation of solution space (hard SAT phase)

