NP-completeness, computational complexity, and phase transitions: kSAT and Number Partitioning

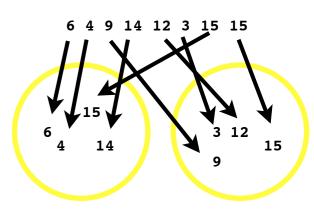
Phys 7682 / CIS 6229: Computational Methods for Nonlinear Systems

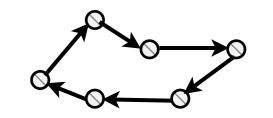
- Computational complexity
 - study of how resources required to solve a problem (e.g., CPU time, memory) scale with the size of the problem
 - e.g., polynomial time algorithm (t ~ N log N, t ~ N²) vs. exponential time algorithm (t ~ 2^N, t ~ e^N)
- Complexity classes
 - P: set of problems solvable in time polynomial in problem size on a deterministic sequential machine
 - NP (non-deterministic polynomial): set of problems for which a solution can be verified in polynomial time
 - NP-Complete: set of problems that are in NP, and are NP-hard (i.e., that every other problem in NP is reducible to it in polynomial time)
 - a polynomial time algorithm to solve one NP-complete problem would constitute a polynomial time algorithm to solve all of them
 - no known polynomial time algorithms for NP-complete problems
 - exponential runtimes consider worst case scenario; increasing interest in typical case complexity

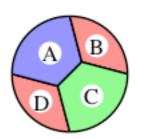
NP-complete problems

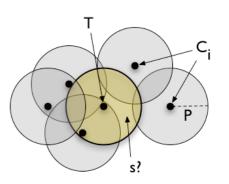
- Thousands of problems proven to be NP-complete (see, e.g., Garey and Johnson, *Computers and Intractability*, or Skiena, *The* Algorithm Design Manual)
 - typically phrased as "decision problems" with yes/no answer
- Satisfiability (SAT): given a set U of boolean variables, and a set of clauses C over U, is there a satisfying truth assignment for C?
- *Partitioning*: given a finite set A and a size $s(a) \in Z^+$ for each $a \in A$, is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) = \sum_{a \in A A'} s(a)$?
- *Traveling Salesman*: given a set C of m cities, distance $d(c_i,c_j) \in Z^+$ for each pair of cities $c_i,c_j \in C$, and a positive integer B, is there a tour of C having length B or less?
- Graph K-colorability: given a graph G=(V,E), and a positive integer $K \le |V|$, is G K-colorable, i.e., does there exist a function f: $V \rightarrow \{1,2,...,K\}$ such that $f(u) \ne f(v)$ whenever $\{u,v\} \in E$?
- Sequence Niche: given a sequence $T \in \{0, I\}^L$, a set of sequences $C_i \in \{0, I\}^L$ for i=1,...,N and a positive integer $P \le L$, is there a sequence $s \in \{0, I\}^L$ such that $|s-T| \le P$ and $|s-C_i| > P$ for all i=1,...,N?

```
 \begin{pmatrix} x_1 \lor x_2 \lor -x_4 \end{pmatrix} \land \\ (x_2 \lor -x_3 \lor -x_5 ) \land \\ (x_3 \lor x_4 \lor x_5 ) \land \\ \dots \\ (x_4 \lor -x_8 \lor x_N )
```









kSAT

- SAT (logical satisfiability)
 - given a set of logical clauses in conjunctive normal form (CNF) over a set of boolean variables, is there a variable assignment that satisfies all clauses?
- kSAT
 - restrict all clauses to length k
 - NP-complete for all $k \ge 3$
 - in P for k = 2
- 2^N possible assignments for N variables
 - exhaustive enumeration only an option for very small systems

k variables per clause, N variables total

 $\wedge = AND, \\ \vee = OR, \\ - = NOT, \\ x_i = True \text{ or False}$

Some algorithms for kSAT

- Davis-Putnam (+ modifications)
 - complete: can determine whether or not there is a solution for any instance
 - recursive: set a variable, eliminate resolved clauses, call itself on reduced problem
 - either assignment or contradiction is found
 - backtrack if contradiction is found
 - lots of heuristics (variable ordering, MOMS, random restarts) to prune the exponential search tree
- WalkSAT
 - randomly flips variables in unsatisfied clauses
 - incomplete: cannot determine that there is no solution
- Survey Propagation (SP)
 - based on "cavity method" developed to study the statistical mechanics of spin glasses
 - fast, complicated, and incomplete

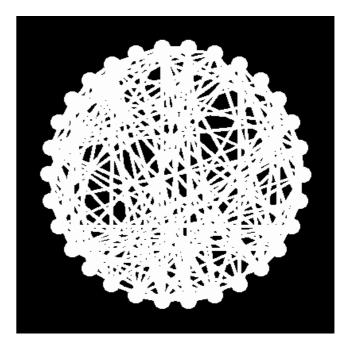
 $(x_1 \lor x_2 \lor -x_4) \land \\ (x_2 \lor -x_3 \lor -x_5) \land$

$$(\mathbf{x}_3 \lor \mathbf{x}_4 \lor \mathbf{x}_5) \land$$

$$(x_4 \vee -x_8 \vee x_N)$$

$$\wedge$$
 = AND,

 $\mathbf{x}_i = True \text{ or False}$



Phase transitions in random SAT problems

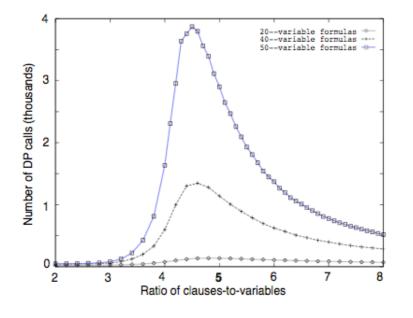
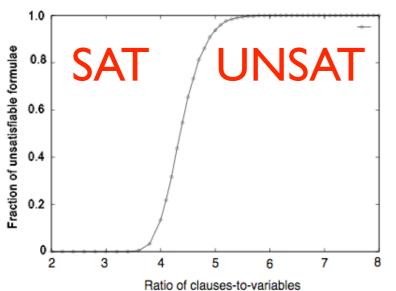


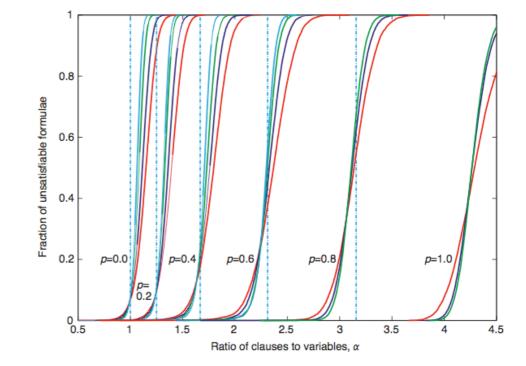
Figure 1.1: Solving 3SAT instances.



solving 3SAT problems gets hard near the SAT-UNSAT transition

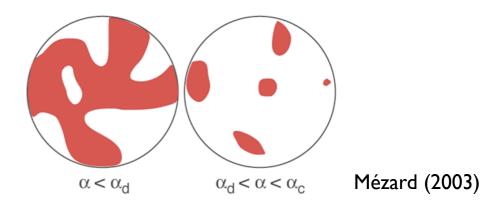
(# DP calls = # of recursive calls in Davis-Putnam algorithm)

Kirkpatrick and Selman (2001)



Monasson et al. (1999)

2+p-SAT



fragmentation of solution space (hard SAT phase)

