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Infection timeline

Keeling & Rohani, Fig. 1.2



The spread of disease



The spread of disease



Scales, foci & the multidisciplinary nature of 
infectious disease modeling & control

within-host

between hosts

- virology, bacteriology, mycology, etc.
- immunology

- disease ecology
- demography
- vectors, water, etc.
- zoonoses
- weather & climate

response

- control strategies
- epidemiology
- public health & logistics
- economic impacts

transmission



Disease models at various levels of resolution

S➛I➛R

agent-based 
models

compartmental 
models 

(fully-mixed)

metapopulation, network & 
landscape models 
(the vast middle)

fine resolution; heterogeneous coarse resolution; homogeneous



Compartmental models
• Assumptions: 

- population is well-mixed: all contacts equally likely 

- only need to keep track of number (or concentration) of hosts in different states 
or compartments 

• Typical states 
- Susceptible: not exposed, not sick, can become infected 

- Infectious: capable of spreading disease 

- Recovered (or Removed): immune (or dead), not capable of spreading disease 

- Exposed: “infected”, but not infectious 

- Carrier: “infected” (although perhaps asymptomatic), and capable of spreading 
disease, but with a different probability



Compartmental models

S I R

S I

S I RE

S I R

S I
R

C

SIR: lifelong immunity

SIS: no immunity

SEIR: SIR with latent (exposed) period

SIR with waning immunity

SIR with carrier state

adapted from K&R



An aside on graphical notations

S I R

Anderson & May, Fig. 2.1

adapted from K&R

Petri Net: bipartite graph of places 
(states) and transitions (reactions)

state transitions
influence

S I R

infection recovery



Susceptible-Infected-Recovered (SIR)

S I R

infection recovery

• Dates back to Kermack & McKendrick (1927), if 
not earlier 

• Assume initially no demography 

- disease moving quickly through population of 
fixed size N 

• Let: 

- X = # of susceptibles; proportion S = X/N 

- Y = # of infectives; proportion I = Y/N 

- Z = # of recovereds; proportion R = Z/N 

- note X+Y+Z = N, S+I+R=1 

• average infectious period = 1/γ	 

• force of infection λ  

- per capita rate at which susceptibles become 
infected 
!

dS/dt = ��SI

dI/dt = �SI � �I

dR/dt = �I



SIR dynamics

S I R

infection recovery

dS/dt = ��SI

dI/dt = �SI � �I

dR/dt = �I

γ= 1.0

• Outbreak dies out if transmission 
rate is sufficiently low 

• Outbreak takes off if transmission 
rate is sufficiently high 



R0 and the epidemic threshold

dS/dt = ��SI

dI/dt = �SI � �I

dR/dt = �I

• define basic reproductive ratio:

R0 = �/�
= average number of secondary cases 
arising from an average primary case 
in an entirely susceptible population 

• epidemic threshold at R0 = 1 

dI/dt = I(� � �)
> 0 if �/� > 1
< 0 if �/� < 1

(grows)
(dies out)

Introduction into fully susceptible population
S I R

infection recovery

dS/d� = �R0SI

dI/d� = R0SI � I

dR/d� = I

� = �t



Epidemic burnout

S I R

infection recovery

dS/dt = ��SI

dI/dt = �SI � �I

dR/dt = �I

• integrate with respect to R:

dS/dR = ��S/� = �R0S

S(t) = S(0)e�R(t)R0

R � 1 =� S(t) � e�R0 > 0

• there will always be some susceptibles who escape infection 
!

• the chain of transmission eventually breaks due to the decline in 
infecteds, not due to the lack of susceptibles



Fraction of population infected
S(t) = S(0)e�R(t)R0

• solve this equation (numerically) for R(∞) = total proportion of population infected

S(�) = 1�R(�) = S(0)e�R(�)R0

R0 = 2

• outbreak: any sudden onset of infectious disease 
• epidemic: outbreak involving non-zero fraction of population (in limit N→∞), or 
which is limited by the population size

initial slope 
 = R0



Infectious disease module: SIR model

• Deterministic model 
- integrate ODE for (S,I,R) dynamics 

- epidemic threshold 

- size of outbreaks as a function of R0 

• Stochastic model 
- simulate using Gillespie algorithm 

- outbreak size distributions 

- stochastic die-out

S I R

infection recovery



Beyond SIR

• Other compartmental models 
- SIS, SIRS, SIR+demography: endemic persistence 

- age-structured & risk-structured models 

- vectored diseases (transmitted by third-parties, e.g., mosquitoes) 

- temporally forced diseases: complex dynamics 

- control: vaccination, quarantine, culling, etc. 
!

• Disease spread on networks 
- epidemic threshold         percolation transition  

- role of network topology, e.g., degree distribution 
!

• Disease spread on metapopulations & landscape 
- roles of migration, dispersal and spillover 

- e.g., zoonotic diseases that cross from animals to humans



SIR with demography

• Allow for births and deaths 

- assume each happen at a 
constant rate µ 

- R0 reduced to account for both 
recovery and mortality

S I R

infection recovery

birth

death death death

dS/dt = µ� �SI � µS

dI/dt = �SI � �I � µI

dR/dt = �I � µR

R0 =
�

� + µ



Equilibria

S I R

infection recovery

birth

death death death

dS/dt = µ� �SI � µS

dI/dt = �SI � �I � µI

dR/dt = �I � µR

dS/dt = dI/dt = dR/dt = 0

I (�S � (� + µ)) = 0 =�
I = 0 or
S = (� + µ)/� = 1/R0

(S�, I�, R�) = (
1

R0
,
µ

�
(R0 � 1), 1� 1

R0
� µ

�
(R0 � 1))

• Disease-free equilibrium 

• Endemic equilibrium (only possible for R0>1):

(S�, I�, R�) = (1, 0, 0)



Endemic equilibrium

R0 = 5

• Pool of fresh susceptibles 
enables infection to be 
sustained 

• To establish equilibrium, must 
have each infective productive 
one new infective to replace 
itself 

• S = 1/R0

(S�, I�, R�) = (
1

R0
,
µ

�
(R0 � 1), 1� 1

R0
� µ

�
(R0 � 1))



Vaccination
• minimum size of susceptible population needed to sustain epidemic 

!
!

• vaccination reduces the size of the susceptible population 

• immunizing a fraction p reduces R0 to: 

!
!
!
• critical vaccination fraction is that required to reduce R0 < 1

ST = �/� =� R0 = S/ST

Ri
0 =

(1� p)S
ST

= (1� p)R0

pc = 1� 1
R0

“herd immunity”

K&R, Fig. 8.1

alternatively, pc needed to drive endemic equilibrium to I*=0: 

(S�, I�, R�) = (
1

R0
,
µ

�
(R0 � 1), 1� 1

R0
� µ

�
(R0 � 1))


