Infectious disease dynamics

Colizza & Vespignani

wpclipart.com

drexelmedicine.org

primeradx.com

Infection timeline

Figure 1.2. A caracature of the time-line of infection, showing the dynamics of the pathogen (gray area) and the host immune response (black line) as well as labeling the various infection classes: susceptible, exposed, infectious, and recovered. Note that the diseased period, when symptoms are experienced, is not necessarily correlated with any particular infection class.

Keeling & Rohani, Fig. 1.2

The spread of disease

The spread of disease

Scales, foci & the multidisciplinary nature of infectious disease modeling & control

response	 control strategies epidemiology public health & logistics economic impacts 	
between hosts	 disease ecology demography vectors, water, etc. zoonoses weather & climate 	
		'n
within-host	- virology, bacteriology, mycology, etc.	

- immunology

Disease models at various levels of resolution

fine resolution; heterogeneous

coarse resolution; homogeneous

Compartmental models

Assumptions:

- population is well-mixed: all contacts equally likely
- only need to keep track of number (or concentration) of hosts in different states or compartments
- Typical states
 - Susceptible: not exposed, not sick, can become infected
 - Infectious: capable of spreading disease
 - Recovered (or Removed): immune (or dead), not capable of spreading disease
 - Exposed: "infected", but not infectious
 - Carrier: "infected" (although perhaps asymptomatic), and capable of spreading disease, but with a different probability

Figure 1.2. A caracature of the time-line of infection, showing the dynamics of the pathogen (gray area) and the host immune response (black line) as well as labeling the various infection classes: susceptible, exposed, infectious, and recovered. Note that the diseased period, when symptoms are experienced, is not necessarily correlated with any particular infection class.

Compartmental models

S

S

SIR: lifelong immunity

SIS: no immunity

SEIR: SIR with latent (exposed) period

SIR with carrier state

SIR with waning immunity

R

adapted from K&R

An aside on graphical notations

Petri Net: bipartite graph of places (states) and transitions (reactions)

recovery

infection

Susceptible-Infected-Recovered (SIR)

- Dates back to Kermack & McKendrick (1927), if not earlier
- Assume initially no demography
 - disease moving quickly through population of fixed size N
- Let:
 - X = # of susceptibles; proportion S = X/N
 - Y = # of infectives; proportion I = Y/N
 - Z = # of recovereds; proportion R = Z/N
 - note X+Y+Z = N, S+I+R=1
- average infectious period = $1/\gamma$
- force of infection λ
 - per capita rate at which susceptibles become infected

 $dS/dt = -\beta SI$ $dI/dt = \beta SI - \gamma I$ $dR/dt = \gamma I$

SIR dynamics

- $dS/dt = -\beta SI$ $dI/dt = \beta SI - \gamma I$ $dR/dt = \gamma I$
- Outbreak dies out if transmission rate is sufficiently low
- Outbreak takes off if transmission rate is sufficiently high

R₀ and the epidemic threshold

Introduction into fully susceptible population

$$\begin{aligned} dI/dt &= I(\beta - \gamma) \\ &> 0 \text{ if } \beta/\gamma > 1 \quad \text{(grows)} \\ &< 0 \text{ if } \beta/\gamma < 1 \quad \text{(dies out)} \end{aligned}$$

• define *basic reproductive ratio*:

$$R_0 = \beta / \gamma$$

= average number of secondary cases arising from an average primary case in an entirely susceptible population

• epidemic threshold at R₀ = 1

infection recovery $dS/dt = -\beta SI$ $dI/dt = \beta SI - \gamma I$ $dR/dt = \gamma I$ $dS/d\tau = -R_0 SI$ $dI/d\tau = R_0 SI - I$ $dR/d\tau = I$ $\tau = \gamma t$

Epidemic burnout

- there will always be some susceptibles who escape infection
- the chain of transmission eventually breaks due to the decline in infecteds, not due to the lack of susceptibles

Fraction of population infected

$$S(t) = S(0)e^{-R(t)R_0}$$

$$S(\infty) = \left[1 - R(\infty) = S(0)e^{-R(\infty)R_0}\right]$$

• solve this equation (numerically) for $R(\infty)$ = total proportion of population infected

- outbreak: any sudden onset of infectious disease
- *epidemic*: outbreak involving non-zero fraction of population (in limit $N \rightarrow \infty$), or which is limited by the population size

Infectious disease module: SIR model

- Deterministic model
 - integrate ODE for (S,I,R) dynamics
 - epidemic threshold
 - size of outbreaks as a function of R0
- Stochastic model
 - simulate using Gillespie algorithm
 - outbreak size distributions
 - stochastic die-out

Beyond SIR

- Other compartmental models
 - SIS, SIRS, SIR+demography: endemic persistence
 - age-structured & risk-structured models
 - vectored diseases (transmitted by third-parties, e.g., mosquitoes)
 - temporally forced diseases: complex dynamics
 - control: vaccination, quarantine, culling, etc.
- Disease spread on networks

 - role of network topology, e.g., degree distribution
- Disease spread on metapopulations & landscape
 - roles of migration, dispersal and spillover
 - e.g., zoonotic diseases that cross from animals to humans

SIR with demography

- Allow for births and deaths
 - assume each happen at a constant rate µ
- R₀ reduced to account for both recovery and mortality

$$R_0 = \frac{\beta}{\gamma + \mu}$$

$$dS/dt = \mu - \beta SI - \mu S$$

$$dI/dt = \beta SI - \gamma I - \mu I$$

$$dR/dt = \gamma I - \mu R$$

Equilibria

$$dS/dt = dI/dt = dR/dt = 0$$

$$I \quad (\beta S - (\gamma + \mu)) = 0 \implies$$

$$I = 0 \text{ or}$$

$$S = (\gamma + \mu)/\beta = 1/R_0$$

$$dS/dt = \mu - \beta SI - \mu S$$

$$dI/dt = \beta SI - \gamma I - \mu I$$

$$dR/dt = \gamma I - \mu R$$

• Disease-free equilibrium

 $(S^*, I^*, R^*) = (1, 0, 0)$

• Endemic equilibrium (only possible for R₀>1):

$$(S^*, I^*, R^*) = \left(\frac{1}{R_0}, \frac{\mu}{\beta}(R_0 - 1), 1 - \frac{1}{R_0} - \frac{\mu}{\beta}(R_0 - 1)\right)$$

Endemic equilibrium

$$(S^*, I^*, R^*) = \left(\frac{1}{R_0}, \frac{\mu}{\beta}(R_0 - 1), 1 - \frac{1}{R_0} - \frac{\mu}{\beta}(R_0 - 1)\right)$$

- Pool of fresh susceptibles enables infection to be sustained
- To establish equilibrium, must have each infective productive one new infective to replace itself

•
$$S = 1/R_0$$

Vaccination

• minimum size of susceptible population needed to sustain epidemic

$$S_T = \gamma/\beta \implies R_0 = S/S_T$$

- vaccination reduces the size of the susceptible population
- immunizing a fraction p reduces R₀ to:

$$R_0^i = \frac{(1-p)S}{S_T} = (1-p)R_0$$

• critical vaccination fraction is that required to reduce $R_0 < 1$

$$p_c = 1 - \frac{1}{R_0}$$
 "herd immunity"

alternatively, p_c needed to drive endemic equilibrium to I*=0:

$$(S^*, I^*, R^*) = \left(\frac{1}{R_0}, \frac{\mu}{\beta}(R_0 - 1), 1 - \frac{1}{R_0} - \frac{\mu}{\beta}(R_0 - 1)\right)$$

K&R, Fig. 8.1