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Exercises

4.1 Equilibration.1 2 (Computation) ©2
Can we verify that realistic systems of atoms equi-
librate? As we have discussed in Section 4.2, we
do not know how to prove that systems of realistic
atoms are ergodic. Also, phase space is so large we
cannot verify ergodicity by checking computation-
ally that a trajectory visits all portions of it.

(a) For 20 particles in a box of size L×L×L, could

we hope to test if our trajectory came close to all

spatial configurations of the atoms? Let us call two

spatial configurations ‘nearby’ if the corresponding

atoms in the two configurations are in the same

(L/10) × (L/10) × (L/10) subvolume. How many

‘distant’ spatial configurations are there? On a hy-

pothetical computer that could test 1012 such config-

urations per second, how many years would it take

to sample this number of configurations? (Hint:
Conveniently, there are roughly π × 107 seconds in
a year.

We certainly can solve Newton’s laws using molec-
ular dynamics to check the equilibrium predictions

made possible by assuming ergodicity. You may
download our molecular dynamics software [10] and
hints for this exercise from the text web site [129].

Run a constant-energy (microcanonical) simula-
tion of a fairly dilute gas of Lennard–Jones par-
ticles (crudely modeling argon or other noble
gases). Start the atoms at rest (an atypical, non-
equilibrium state), but in a random configuration
(except ensure that no two atoms in the initial con-
figuration overlap, less than |∆r| = 1 apart). The
atoms that start close to one another should start

moving rapidly, eventually colliding with the more
distant atoms until the gas equilibrates into a sta-
tistically stable state.

We have derived the distribution of the components
of the momenta (px, py, pz) for an equilibrium ideal
gas (eqn 3.19 of Section 3.2.2),

ρ(px) =
1√

2πmkBT
exp

(

− px
2

2mkBT

)

(4.10)

This momentum distribution also describes inter-
acting systems such as the one we study here (as
we shall show in Chapter 6).

(b) Plot a histogram of the components of the mo-

mentum in your gas for a few time intervals, mul-

tiplying the averaging time by four for each new

graph, starting with just the first time-step. At

short times, this histogram should be peaked around

zero, since the atoms start at rest. Do they appear

to equilibrate to the Gaussian prediction of eqn 4.10

at long times? Roughly estimate the equilibration

time, measured using the time dependence of the

velocity distribution. Estimate the final tempera-

ture from your histogram.

These particles, deterministically following New-
ton’s laws, spontaneously evolve to satisfy the pre-
dictions of equilibrium statistical mechanics. This
equilibration, peculiar and profound from a dynam-
ical systems point of view, seems obvious and ordi-
nary from the perspective of statistical mechanics.
See Fig. 4.3 and Exercise 4.4 for a system of in-
teracting particles (planets) which indeed does not
equilibrate.

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 69. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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