
• Molecular dynamics

- Integration of Newton’s 2nd law for a large
collection of particles

• physics

- thermodynamics of (non)interacting gases

- structure, energetics, and dynamics of liquids,
crystalline solids and defects (e.g., dislocations,
cracks), disordered systems (e.g., glasses)

- interatomic potentials, increasingly derived from
quantum mechanical calculations

• biology

- structure, energetics, and dynamics of
macromolecules (e.g., proteins)

- details of protein conformations, protein-ligand
binding

- interatomic potentials typically empirically derived
(AMBER, CHARMM, etc.)

Molecular Dynamics, Digital Material, and Design Patterns
Physics 7682 / CIS 6229: Computational Methods for Nonlinear Systems

!F = m!a

Molecular Dynamics module

• Not usual hints+fill-in-the-missing
code structure

- focused more on use of existing
package (Digital Material) and
analysis of simulation data

- uses VPython (visual) for
animated graphics

• Exercises

- Perfume Walk: random walk due
to collisions

- Pressure: emergence of pressure
from collisions

- Equilibration: convergence to
equilibrium from nonequilibrium
state

- Exponential Atmosphere:
thinning of atmosphere under
gravity

- Pair Distribution Function:
positional correlations in gas,
liquid, solid

Perfume Walk Pressure

Equilibration

Exponential Atmosphere

Pair Distribution

Digital Material package

• Grew out of a multiscale materials modeling effort (Sethna, Myers, et al. 1998-2002)

- emphasis on investigating the structure and dynamics of defects in crystalline
and polycrystalline materials relevant for deformation and failure

➡ dislocations, dislocation tangles, grain boundaries, cracks

- emphasis on construction and manipulation on nontrivial, heterogeneous defect
geometries and coupling to coarse-grained models (e.g., finite-element analysis)

- original code in C++ with minimal Python wrapper; ported to Python for Phys
682 / CIS 629 by Sethna

Class Diagram: interactions among classes in OO code

Class Diagram: interactions among classes in OO code

CRM, “Software systems as complex networks...”, Phys. Rev. E (2003)

Design patterns

• Object-oriented design methodology for building code that can easily incorporate changes

- collaborations among sets of classes/objects to encapsulate highly variable pieces

- different patterns encapsulate different types of variability, e.g.,

- factories address variability in the construction of objects

- observers address variability in views/analyses of a central data repository

- strategies address variability in algorithms

- adapters address variability in class/object interfaces

- emphasis on having many smaller objects working together (more reconfigurable), rather
than more specialized and monolithic pieces that are harder to change

- initially catalogued in the well-known book by Gamma et al. (“Gang of Four”, of GoF)

• Design patterns in Digital Material

- ListOfAtoms: efficient collections of atoms

- Initializers and transformers: decoupled algorithms for manipulating structure

- Movers: decoupling structure from dynamics (use different algorithms)

- Observers: decoupling analysis from dynamics (generic Update() interface)

- Boundary conditions: decoupling enforcement of boundary conditions from dynamics

- NeighborLocators: decoupling structure from force computation

Gravity cluster

gravityPotential = GravityPotential(g=g)
LennardJonesPotential = LennardJonesCutPotential()
potential = CompositePotential([gravityPotential,
 LennardJonesPotential])
boundaryConditions = ReflectiveBoundaryConditions(L)
neighborLocator = SimpleNeighborLocator(LennardJonesPotential.cutoff,
 boundaryConditions)
atoms = TriangularSphericalClusterListOfAtoms(
 R=R, center=[L/2., L/2.], temperature=T,
 radius=LennardJonesPotential.latticeSpacing/2.0)
displayObserver = VisualDisplayAtomsObserver(atoms,L)
energyObserver = EnergyObserver(potential, neighborLocator,
 boundaryConditions)
observers = [displayObserver, energyObserver]
mover = RunVelocityVerlet;
sys = MDSystem(L, atoms, observers, neighborLocator,
 boundaryConditions, potential, mover)

