Molecular Dynamics, Digital Material, and Design Patterns
Physics 7682 / CIS 6229: Computational Methods for Nonlinear Systems

® Molecular dynamics

= Integration of Newton’s 2nd law for a large
collection of particles

—

F = ma

® physics
thermodynamics of (hon)interacting gases

structure, energetics, and dynamics of liquids,
crystalline solids and defects (e.g., dislocations,
cracks), disordered systems (e.g., glasses)

interatomic potentials, increasingly derived from
quantum mechanical calculations

® biology

structure, energetics, and dynamics of
macromolecules (e.g., proteins)

details of protein conformations, protein-ligand
binding

interatomic potentials typically empirically derived
(AMBER, CHARMM, etc.)




Molecular Dynamics module

Not usual hints+fill-in-the-missing
code structure

focused more on use of existing
package (Digital Material) and
analysis of simulation data

uses VPython (visual) for
animated graphics

Exercises

Perfume Walk: random walk due
to collisions

Pressure: emergence of pressure
from collisions

Equilibration: convergence to
equilibrium from nonequilibrium
state

Exponential Atmosphere:
thinning of atmosphere under
gravity

Pair Distribution Function:
Fositional correlations in gas,
iquid, solid

Perfume Walk Pressure

Equilibration Pair Distribution

Height distribution

ho(v)
© © ©
- N N
w (=] w

Probability density r

e
N
o

Exponential Atmosphere




Digital Material package

® Grew out of a multiscale materials modeling effort (Sethna, Myers, et al. 1998-2002)

- emclbhasis on investigating the structure and dynamics of defects in crystalline
and polycrystalline materials relevant for deformation and failure

= dislocations, dislocation tangles, grain boundaries, cracks

emphasis on construction and manipulation on nontrivial, heterogeneous defect
geometries and coupling to coarse-grained models (e.g., finite-element analysis)

original code in C++ with minimal Python wrapper; ported to Python for Phys
682 / CIS 629 by Sethna




Class Diagram: interactions among classes in OO code

lergyom?m'v

BoundansCondstion

+DifferenceBoundaryCondhon(
+EnforczBoundaryCondtions()

Polential

+CdculateForces()
+CaculateEnergyt)
+GaCutafiCistance(] HeighbarLocator

. AT Dtance - Jibie I Rigdtody I

L 1 1 #MNeighbars()
* V #HalfMNeighdbors()

ListOfAtoms

Atamshovef

Lshape

ALt - doube +mass | dauble - -
atime : dauble LtypeName © String Canstraint memeWln*

ahiove() ~sublist I

FAN parentList FAdiustFrces) |
+AcusiForces() +AdjustPastiaons()
#+CalculatzReducedForces() +Adjustvedocties(”

HincremedCantesianPositions() L CalcubteReducedForces() I FixredBady
el letAtunsMuvs 4HncremedCartesianVelocities() = + GatindesendentDOF ()

+GetHinedcEneray) 1 HincrementindependentDOF()
+Remoyeidtoms()

Fay

&

Transforme{

rimitiveListOfAtormm

+Transfarm()
2 HotchiMaker anfigurationShifte verkapPrune

S —4

-rostions, velocties




Class Diagram: interactions among classes in OO code

Programma@iieDMIterato

DMArrayltei@i®t _Typd

v"i;’" ' ‘_\‘. T
P PelA \
== =20

B :;i‘ 1l
= /.- A ‘\ D
NG ¥

CRM,“Software systems as complex networks...”, Phys. Rev. E (2003)




Design patterns

Object-oriented design methodology for building code that can easily incorporate changes
= collaborations among sets of classes/objects to encapsulate highly variable pieces
- different patterns encapsulate different types of variability, e.g.,

= factories address variability in the construction of objects

= observers address variability in views/analyses of a central data repository

- strategies address variability in algorithms

= adapters address variability in class/object interfaces

emphasis on having many smaller objects working together (more reconfigurable), rather
than more specialized and monolithic pieces thatare harder to change

initially catalogued in the well-known book by Gamma et al. (“Gang of Four”, of GoF)

Design patterns in Digital Material
ListOfAtoms: efficient collections of atoms
Initializers and transformers: decoupled algorithms for manipulating structure
Movers: decoupling structure from dynamics (use different algorithms)
Observers: decoupling analysis from dynamics (generic Update() interface)
Boundary conditions: decoupling enforcement of boundary conditions from dynamics

NeighborLocators: decoupling structure from force computation




Gravity cluster

gravityPotential = GravityPotential (g=qg)
LennardJonesPotential = LennardJonesCutPotential ()
potential = CompositePotential ([gravityPotential,
LennardJonesPotentiall])
boundaryConditions ReflectiveBoundaryConditions (L)
neighborLocator = SimpleNeighborLocator (LennardJdJonesPotential.cutoff,
boundaryConditions)
atoms = TriangularSphericalClusterListOfAtoms (
R=R, center=[L/2., L/2.], temperature=T,
radius=LennardJonesPotential.latticeSpacing/2.0)
displayObserver = VisualDisplayAtomsObserver (atoms, L)
energyObserver = EnergyObserver (potential, neighborLocator,
boundaryConditions)
observers = [displayObserver, energyObserver]
mover = RunVelocityVerlet;
sys = MDSystem (L, atoms, observers, neighborLocator,
boundaryConditions, potential, mover)




