
 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

Exercises

1.7 Six degrees of separation.1 2 (Complexity,
Computation) ©4

One of the more popular topics in random network
theory is the study of how connected they are. ‘Six
degrees of separation’ is the phrase commonly used
to describe the interconnected nature of human ac-
quaintances: various somewhat uncontrolled stud-
ies have shown that any random pair of people in
the world can be connected to one another by a
short chain of people (typically around six), each of
whom knows the next fairly well. If we represent
people as nodes and acquaintanceships as neigh-
bors, we reduce the problem to the study of the
relationship network.

Many interesting problems arise from studying
properties of randomly generated networks. A
network is a collection of nodes and edges, with
each edge connected to two nodes, but with each
node potentially connected to any number of edges
(Fig. 1.5). A random network is constructed prob-
abilistically according to some definite rules; study-
ing such a random network usually is done by
studying the entire ensemble of networks, each
weighted by the probability that it was constructed.
Thus these problems naturally fall within the broad
purview of statistical mechanics.

Fig. 1.5 Network. A network is a collection of nodes
(circles) and edges (lines between the circles).

In this exercise, we will generate some random net-
works, and calculate the distribution of distances
between pairs of points. We will study small world
networks [142,95], a theoretical model that suggests
how a small number of shortcuts (unusual interna-
tional and intercultural friendships) can dramati-
cally shorten the typical chain lengths. Finally, we
will study how a simple, universal scaling behavior
emerges for large networks with few shortcuts.

In the computer exercises section on the book web
site [129], you will find some hint files and graphic
routines to facilitate working this exercise. We plan
to support a variety of languages and systems.

Constructing a small world network. The L nodes
in a small world network are arranged around a cir-
cle. There are two kinds of edges. Each node has
Z short edges connecting it to its nearest neigh-
bors around the circle (up to a distance Z/2). In
addition, there are p×L×Z/2 shortcuts added to
the network, which connect nodes at random (see
Fig. 1.6). (This is a more tractable version [95] of
the original model [142], which rewired a fraction p
of the LZ/2 edges.)

(a) Define a network object on the computer. For
this exercise, the nodes will be represented by in-
tegers. Implement a network class, with five func-
tions:

(1) HasNode(node), which checks to see if a node
is already in the network;

(2) AddNode(node), which adds a new node to the
system (if it is not already there);

(3) AddEdge(node1, node2), which adds a new
edge to the system;

(4) GetNodes(), which returns a list of existing
nodes; and

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 9. A pdf of the text is avail-
able at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the text).
Hyperlinks from this exercise into the text will work if the latter PDF is downloaded
into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf

 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

2

(5) GetNeighbors(node), which returns the neigh-
bors of an existing node.

Fig. 1.6 Small world network with L = 20, Z = 4,
and p = 0.2.3

Write a routine to construct a small world net-
work, which (given L, Z, and p) adds the nodes
and the short edges, and then randomly adds the
shortcuts. Use the software provided to draw this
small world graph, and check that you have im-
plemented the periodic boundary conditions cor-
rectly (each node i should be connected to nodes
(i − Z/2) mod L, . . . , (i + Z/2) mod L).4

Measuring the minimum distances between nodes.
The most studied property of small world graphs
is the distribution of shortest paths between nodes.
Without the long edges, the shortest path between
i and j will be given by hopping in steps of length
Z/2 along the shorter of the two arcs around the
circle; there will be no paths of length longer than
L/Z (half-way around the circle), and the distri-
bution ρ(`) of path lengths ` will be constant for
0 < ` < L/Z. When we add shortcuts, we expect
that the distribution will be shifted to shorter path
lengths.

(b) Write the following three functions to find and
analyze the path length distribution.

(1) FindPathLengthsFromNode(graph, node),
which returns for each node2 in the graph the

shortest distance from node to node2. An ef-
ficient algorithm is a breadth-first traversal
of the graph, working outward from node in
shells. There will be a currentShell of nodes
whose distance will be set to ` unless they have
already been visited, and a nextShell which
will be considered after the current one is fin-
ished (looking sideways before forward, breadth
first), as follows.

– Initialize ` = 0, the distance from node

to itself to zero, and currentShell =

[node].

– While there are nodes in the new
currentShell:

∗ start a new empty nextShell;

∗ for each neighbor of each node in
the current shell, if the distance to
neighbor has not been set, add the
node to nextShell and set the dis-
tance to ` + 1;

∗ add one to `, and set the current shell
to nextShell.

– Return the distances.

This will sweep outward from node, measur-
ing the shortest distance to every other node
in the network. (Hint: Check your code with a
network with small N and small p, comparing
a few paths to calculations by hand from the
graph image generated as in part (a).)

(2) FindAllPathLengths(graph), which gener-
ates a list of all lengths (one per pair
of nodes in the graph) by repeatedly using
FindPathLengthsFromNode. Check your func-
tion by testing that the histogram of path
lengths at p = 0 is constant for 0 < ` < L/Z,
as advertised. Generate graphs at L = 1000
and Z = 2 for p = 0.02 and p = 0.2; display
the circle graphs and plot the histogram of path
lengths. Zoom in on the histogram; how much
does it change with p? What value of p would
you need to get ‘six degrees of separation’?

(3) FindAveragePathLength(graph), which com-
putes the mean 〈`〉 over all pairs of nodes.
Compute ` for Z = 2, L = 100, and p = 0.1

3There are seven new shortcuts, where pLZ/2 = 8; one of the added edges overlapped
an existing edge or connected a node to itself.
4Here (i − Z/2) mod L is the integer 0 ≤ n ≤ L − 1 which differs from i − Z/2 by a
multiple of L.

 Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 --

Exercises 3

a few times; your answer should be around
` = 10. Notice that there are substantial sta-
tistical fluctuations in the value from sample
to sample. Roughly how many long bonds are
there in this system? Would you expect fluctu-
ations in the distances?

(c) Plot the average path length between nodes `(p)
divided by `(p = 0) for Z = 2, L = 50, with p on a
semi-log plot from p = 0.001 to p = 1. (Hint: Your
curve should be similar to that of with Watts and
Strogatz [142, fig. 2], with the values of p shifted
by a factor of 100; see the discussion of the contin-
uum limit below.) Why is the graph fixed at one
for small p?

Large N and the emergence of a continuum limit.
We can understand the shift in p of part (c) as a
continuum limit of the problem. In the limit where
the number of nodes N becomes large and the num-
ber of shortcuts pLZ/2 stays fixed, this network
problem has a nice limit where distance is mea-
sured in radians ∆θ around the circle. Dividing `
by `(p = 0) ≈ L/(2Z) essentially does this, since
∆θ = πZ`/L.

(d) Create and display a circle graph of your ge-
ometry from part (c) (Z = 2, L = 50) at p = 0.1;
create and display circle graphs of Watts and Stro-
gatz’s geometry (Z = 10, L = 1000) at p = 0.1 and
p = 0.001. Which of their systems looks statisti-
cally more similar to yours? Plot (perhaps using
the scaling collapse routine provided) the rescaled
average path length πZ`/L versus the total number
of shortcuts pLZ/2, for a range 0.001 < p < 1, for
L = 100 and 200, and for Z = 2 and 4.

In this limit, the average bond length 〈∆θ〉 should
be a function only of M . Since Watts and Stro-
gatz [142] ran at a value of ZL a factor of 100 larger
than ours, our values of p are a factor of 100 larger
to get the same value of M = pLZ/2. Newman
and Watts [99] derive this continuum limit with a
renormalization-group analysis (Chapter 12).

(e) Real networks. From the book web site [129], or
through your own research, find a real network5 and
find the mean distance and histogram of distances
between nodes.

In the small world network, a few long edges are
crucial for efficient transfer through the system
(transfer of information in a computer network,
transfer of disease in a population model, . . .). It
is often useful to measure how crucial a given node
or edge is to these shortest paths. We say a node
or edge is ‘between’ two other nodes if it is along
a shortest path between them. We measure the
‘betweenness’ of a node or edge as the total num-
ber of such shortest paths passing through it, with
(by convention) the initial and final nodes included
in the ‘between’ nodes; see Fig. 1.7. (If there are
K multiple shortest paths of equal length between
two nodes, each path adds 1/K to its intermedi-
ates.) The efficient algorithm to measure between-
ness is a depth-first traversal quite analogous to the
shortest-path-length algorithm discussed above.

Fig. 1.7 Betweenness Small world network with L =
500, K = 2, and p = 0.1, with node and edge sizes
scaled by the square root of their betweenness.

(f) Betweenness (advanced). Read [96, 46], which
discuss the algorithms for finding the betweenness.
Implement them on the small world network, and
perhaps the real world network you analyzed in
part (e). Visualize your answers by using the graph-
ics software provided on the book web site [126].

5Examples include movie-actor costars, ‘Six degrees of Kevin Bacon’, or baseball
players who played on the same team.

	Exercises
	Six degrees of separation

