
Pendulum and Walker
Physics 7682 / CIS 6229

Science Goals:
 Solving Differential Equations
  Basic ideas of ODE solvers
  Accuracy, Stability, Fidelity

 Nonlinear Dynamics Concepts
  Phase Plane Portraits
  Poincare Sections
  Period Doubling
  Chaos

  Models of locomotion

Graphics, functions as objects, manipulating data sets



Solving Differential Equations

• “Easy task”

• Excellent off-the-shelf algorithms and functions

Basic Idea: 
convert differential equation into difference equation

df

dt
= −f

f(ti+1) − f(ti)

δt
≈

df

dt
(ti) = −f(ti)

Different algorithms use different approximations:
Pendulum exercise explores choices

“Order” of algorithm: how accuracy scales with timestep



Not all first order algorithms are created equal

Forward Euler (timestep=0.5)

Backward Euler (timestep=0.5)

Symplectic Euler (timestep=0.5)

θ

t

(Understand by looking at phase space plots)



General Procedure
1. Convert to set of first order equations

2. Choose units

d2θ

dt2
= −

g

L
sin(θ)

dθ
dt

= ω

dω
dt

= −

g
L

sin(θ)

dθ

dt
= ω

dω

dt
= − sin(θ)



Using Scipy’s integrator
def PendulumDerivArray(vars,t):
    theta,omega=vars  # unpack vars
    return numpy.array([omega,-sin(theta)])

times=arange(0,100,0.1)

InitialConditions=[3,0]

trajectory=odeint(PendulumDerivArray,InitialConditions,times)

Returns an array of the form [[theta0,omega0],...

array([[3,0],[2.9929382,-0.0143531],...])

plot theta, and omega vs time with

plot(times,trajectory)     just theta:       plot(times,trajectory[:,0])

Interesting construction: pass a function to another function.  Functions are 
objects.  Functions can even return functions:

smartodeint is defined in  pendulum.py is an integrator which returns functions.



Double Pendulum

• Classic example of chaotic 
system

• sensitive dependance on initial 
conditions

• Trajectories are in 5 
dimensional space

• how to deal with all that data!

Python demo + Real Demo



Poincare Sections
• Trajectories in 5D

• Translational invariance in time: 4D phase space suffices

• Conservation of Energy: trajectories live on 3D manifold

• Poincare section: look at θ2 and ω2 on this manifold when θ1 =0

θ2

ω2

ω1(t = 0) = 0.1

θ2

ω2

ω1(t = 0) = 1.3 ω1(t = 0) = 1.5

ω2

θ2



Walker
• Simplified model of bipedal motion:
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Figure 1: A typical passive walking step. The new stance leg (lighter line) has just made contact with the
ramp in the upper left picture. The swing leg (heavier line) swings until the next heelstrike (bottom right
picture). The top-center picture gives a description of the variables and parameters that we use. θ is the
angle of the stance leg with respect to the slope normal. φ is the angle between the stance leg and the
swing leg. M is the hip mass, and m is the foot mass. l is the leg length, γ is the ramp slope, and g is the
acceleration due to gravity. Leg lines are drawn with different weights to match the plot of figure 2.

3 The Walking Map

3.1 Outline of Procedure

The general procedure for the design and study of these models is based on interpreting a step as a Poincaré
map, or, as McGeer termed it, a ‘stride function.’ Gait limit cycles are fixed points of this function. In this
nonlinear-dynamics approach, one way to evaluate the stability of a gait cycle is to use the eigenvalues of
the linearized map at the fixed point. Readers not familiar with this approach can refer to Appendix A.1
for a summary of the necessary dynamics language.

3.2 Equations of Motion for the Swing Phase

The two coupled second-order differential equations of motion are given below for the swing phase of the
motion, where β = m/M and θ,φ are functions of time t. These two equations represent angular momentum
balance about the foot (for the whole mechanism) and about the hip (for the swing leg), respectively.

[
1 + 2β(1 − cosφ) −β(1 − cosφ)

β(1 − cosφ) −β

] [
θ̈
φ̈

]
+

[
−β sinφ(φ̇2 − 2θ̇φ̇)

βθ̇2 sinφ

]

+
[

(βg/l)[sin (θ − φ− γ) − sin (θ − γ)] − g/l sin (θ − γ)
(βg/l) sin (θ − φ− γ)

]
=

[
0
0

]

These are the equations of motion for a simple double pendulum. We will study the special case where
the ‘foot’ is much smaller than the ‘body,’ because of its conceptual simplicity, and because human feet are
small compared to the rest of the body. Setting β = 0 (the limit as hip mass dominates foot mass) in the
first equation of motion and dividing through by β in the second yields the two simpler equations which we
use (equation 1 and a trig identity are used to simplify equation 2 also).

θ̈(t) − sin (θ(t) − γ) = 0 (1)

θ̈(t) − φ̈(t) + θ̇(t)
2
sinφ(t) − cos(θ(t) − γ) sinφ(t) = 0 (2)
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Double pendulum: but pivot point 
switches from end of one “leg” to 
other whenever there is a “heelstrike”



Walker
• Remarkable: passive model -- can walk

• Nontrivial 
“phase diagram”

• Chaos, stable/unstable
limit cycles, 
period doubling (limping)

• Biological significance:  Evolution of 
geometry of legs?

      

observe that ratio of the distances between successive bifurcation values on the slope axis decreased roughly
as follows: 5.9, 5.2, 4.6, . . .. (As discovered by Feigenbaum, the sequence of ratios is expected to converge to
4.669 . . . (Strogatz, 1995).) At slopes higher than γ = 0.019, the walker falls down; we could no longer find
persistent walking motions. The box on figure 3 shows the region where stable gaits of higher order appear.
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Figure 6: Period doubling of stable walking motions, inset from figure 3. Unstable period-one cycles are
shown for reference. Note that the line weights are opposite to the usual convention; dotted lines represent
stable cycles while solid lines represent unstable ones. No persistent walking was found at slopes much
steeper than 0.019 radians.

A plot of the chaotic attractor is shown in figure 7 for γ = 0.0189. In this Poincaré section, each point
represents the state of the system at the start of a step. The attractor evolves from gait cycles of increasingly
higher period. (Following Goswami et al. (1996b) and Thuilot et al. (1997), and using 30,000 points, we
estimated the attractor’s box-counting dimension (see e.g., Strogatz, 1995) to be about 1.25.)

The chaotic attractor of the walking mechanism brings up some interesting ideas. One usually thinks
of periodic motions as being somehow more desirable and beneficial, but in fact the primary objectives in
walking are usually to move quickly, efficiently, and not to fall down. Simple numerical experiments seem
to imply that the basin of attraction for stable chaotic walking is, in some ways, bigger than the basins
of the periodic fixed points, and therefore the chaotic walking motion might be more robust. It also may
prove useful, if control is added, to keep the system in a chaotic region where many different step length
combinations are readily available for the mechanism.

5.4 Energetic Cost of Locomotion

The simplest measure of passive walking efficiency is the minimum walking slope. If the walker could walk
on level ground, it would be perfectly efficient, since it would require no energy for locomotion. For the
point-foot walker, the stable gait cycles persist as the slope approaches level, although the gait velocity for
these solutions also vanishes. In some sense, the dynamic solution approaches the static, parallel-leg solution
as the ramp becomes flat. If the hip-mass were offset fore-aft from the legs, the gait cycles would approach
a static solution at some non-zero slope which depended on this offset, and ‘near-perfectly efficient’ walking
would not be possible. So, for this model, and presumably for more complicated models, the existence of
near-perfectly efficient gait depends on the details of the mass distribution.

If we use the first-order scaling laws (equations 6 and 7), expanding and retaining appropriate terms to
re-dimensionalize the result, we find that the power used in locomotion for this model is approximately
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