Complex networks
Phys 682 / CIS 629: Computational Methods for Nonlinear Systems

networks are everywhere (and always have been)
= relationships (edges) among entities (hodes)

explosion of interest in network structure,
function, and evolution over the last decade

= technology: Internet,World Wide Web

= biology: genomics, gene expression, protein-
protein interactions, physiology

- SOCiOIOg)’: online communities, gOSSiP & World-wide internet traffic, by Stephen G. Eick (via Barabasi)
rumors, epidemiology, etc.

interest in mathematical characterization fueled
by many common properties among diverse
networks

= degree distributions
= clustering

= small-world property

High school dating, from Bearman 2004 Software class relationships in VTK, by C. Myers
Image by Mark Newman

Small-world networks

motivated by phenomenon of “six degrees of
separation”

studied at Cornell by Duncan Watts and Steve

Strogatz

Nature 393, 440-442 (1998)

simple model of networks with regular
short-range bonds and random long-range
bonds

examination of path lengths and clustering
in model and in real-world networks

Course exercise

calculation of shortest path lengths in
randomly wired graphs

scaling collapse for various p,Z,L
application to real network data
calculation of node and edge betweenness

provided with simple visualization tool

Regular Small-world Random

p=0 » p=1
Increasing randomneass
1T @B a8 g g g7 T T 3
[® 7 e o]
os[° Clp)/Co) ©]
b L] 4
L 0 4
0.6 -
[o]
0.4 . o N
L Lp) /L) e]
0zl (p)/ L(O) .]
- ® ° 1
® e o o 3
0 T | NPT | PEEEPEE T | P 0
0.0001 0.001 0.01 0.1 1
P

decrease in average path length with
increasing # of long-range bonds, from Watts & Strogatz

Table 1 Empirical examples of small-world networks

Lamua\ Lrandc'ﬂ Caclua\ cramsm
Film actors 3.65 2.92 0.79 0.00027
Power grid 18.7 124 0.080 0.005
C. elegans 2.65 225 0.28 0.05

Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices () and average number of edges per
vertex (k). (Actors:n = 225,226, k = 81. Power grid:n = 4,941, k = 2.67.C. elegans:n = 282,
& = 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component® of this
graph, which includes ~80% of all actors listed in the Internet Movie Database {available at
http:/ fus.imdb.com), as of April 1897, For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and ail
vertices as identical, recognizing that these are crude approximations, All three networks
show the small-world phenomenon: L = L yogom BULC 35 Cyngome

Computing for small-world networks:
data structures

network = graph (a set of nodes connected by edges)

interested here in undirected graphs (edge is symmetric
in two connecting nodes

data structures for undirected graph!?
= some use adjacency matrix
» aj = | if nodes i,j connected; 0 otherwise

= we will use a neighbor dictionary

» dictionary maps key to value
» neighbor_dict[i] = [jo, I, j2, ---]

» i.e,for a node i, we store a list [jo, ji, j2, ...] of
nodes that i is connected to

» neighbor dictionary is directed (asymmetric), so
we need to duplicate connections
- if i points to j, then j must point to i

» add a new entry to the dictionary when a new
node is added, append to an existing entry when
an existing node is connected to

Computing for small-world networks:
object-oriented programming

® object-oriented programming
- definition of new datatypes, along with associated
behavior

= encapsulate details of internal implementation
(e.g., neighbor dictionary vs. adjacency matrix)
without modifying external interface

® python class keyword allows definition of new class
of objects

class UndirectedGraph:
def init (self):
self.neighbor dict = {}

def AddNode(self, node):
code to add a node

def AddEdge(self, nodel, node2):
code to add an edge connecting two nodes

def HasNode(self, node):
return True if graph has specified node

etc.

>>>
>>>
>>>
>>>
>>>

g = UndirectedGraph()
g.AddNode(0)
g.AddEdge(1,2)
g.AddEdge(2,3)
g.HasNode(4)

False

“self” refers to the particular
object instance we are working
with, in this case the graph “g”

g.AddNode(0) is shorthand for
UndirectedGraph.AddNode(g,0)

Computing for small-world networks:
graph traversal algorithms

® graph traversal

- iterating through a graph (i.e., over its nodes and _
edges) and calculating some quantity of interest Depth-first

» average shortest path: shortest path between all
pairs of nodes in a graph

» node and edge betweenness: what fraction of
shortest paths each node or edge participates in

» connected clusters (percolation)

= traversing nodes and edges, marking nodes as visited
so they get visited only once

» most common: breadth-first and depth-first

® breadth-first search

- involves iterating through the neighbors of all the
nodes in the current shell,and adding to the next
shell all subsequent neighbors which have not
already been visited

Network growth, structure, etc.

Other papers/projects for further consideration (or maybe you have your own in mind)

Barabasi and Albert,“Emergence of scaling in random networks”

» power-law degree distributions (actor network with bipartite graph?)
Callaway et al.,“Are randomly grown graphs really random?”

» essential singularity for onset of connected cluster

Girvan and Newman, “Community structure in social and biological networks”
» quantifying tightly-knit groups in large networks

Yu et al.,“The importance of bottlenecks in protein networks: Correlation with gene
essentiality and expression dynamics”

» role of betweenness in organizing biological networks

Kaiser and Hilgetag, “Nonoptimal Component Placement, but Short Processing Paths, due
to Long-Distance Projections in Neural Systems”

» investigation of wiring lengths and processing paths from neural network data
graph layout is also an interesting problem

» how to optimally place graph nodes and edges (e.g.,on a 2D display) when there is no
intrinsic geometric information attached to graph

NetworkX: a Python package for creating, manipulating,
and analyzing networks (networkx.lanl.gov)

NetworkX -

| m’ Download " Timeline " Roadmap " Browse Source "o

Start Fage = Index by Title | 1

NetworkX

High productivity software for complex networks
About

NetworkX (NX) is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of
complex networks.

Features:

+ Includes standard graph-theoretic and statistical physics functions

+ Easy exchange of network algorithms between applications, disciplines, and platforms
¢ Includes many classic graphs and synthetic networks

« Nodes and edges can be "anything” (e.g. time-series, text, images, XML records)

« Exploits existing code from high-quality legacy software in C, C++, Fortran, etc.

« Open source (encourages community input)

* Unit-tested

Additional benefits due to Python:

+ Allows fast prototyping of new algorithms
« Easy to teach

« Multi-platform

« Allows easy access to almost any database

Quick Example

Just write in Python

>>> import networkx as HNX
»=> G=NX.Graph()

»>> G.add_edge(l,2)

>>> G.add_node("spam”)
»>>> print G.nodes()

[1, 2, 'spam’)]

»>> print G.edges()

(1, 2)]

