
Complex networks
Phys 682 / CIS 629: Computational Methods for Nonlinear Systems

• networks are everywhere (and always have been)

- relationships (edges) among entities (nodes)

• explosion of interest in network structure,
function, and evolution over the last decade

- technology: Internet, World Wide Web

- biology: genomics, gene expression, protein-
protein interactions, physiology

- sociology: online communities, gossip &
rumors, epidemiology, etc.

• interest in mathematical characterization fueled
by many common properties among diverse
networks

- degree distributions

- clustering

- small-world property

World-wide internet traffic, by Stephen G. Eick (via Barabasi)

Software class relationships in VTK, by C. MyersHigh school dating, from Bearman 2004
Image by Mark Newman

Small-world networks

• motivated by phenomenon of “six degrees of
separation”

• studied at Cornell by Duncan Watts and Steve
Strogatz

- Nature 393, 440-442 (1998)

- simple model of networks with regular
short-range bonds and random long-range
bonds

- examination of path lengths and clustering
in model and in real-world networks

• Course exercise

- calculation of shortest path lengths in
randomly wired graphs

- scaling collapse for various p,Z,L

- application to real network data

- calculation of node and edge betweenness

- provided with simple visualization tool

decrease in average path length with
increasing # of long-range bonds, from Watts & Strogatz

Computing for small-world networks:
data structures

• network = graph (a set of nodes connected by edges)

• interested here in undirected graphs (edge is symmetric
in two connecting nodes

• data structures for undirected graph?

- some use adjacency matrix

! aij = 1 if nodes i,j connected; 0 otherwise

- we will use a neighbor dictionary

! dictionary maps key to value

! neighbor_dict[i] = [j0, j1, j2, ...]

! i.e., for a node i, we store a list [j0, j1, j2, ...] of
nodes that i is connected to

! neighbor dictionary is directed (asymmetric), so
we need to duplicate connections

- if i points to j, then j must point to i

! add a new entry to the dictionary when a new
node is added, append to an existing entry when
an existing node is connected to

Computing for small-world networks:
object-oriented programming

• object-oriented programming

- definition of new datatypes, along with associated
behavior

- encapsulate details of internal implementation
(e.g., neighbor dictionary vs. adjacency matrix)
without modifying external interface

• python class keyword allows definition of new class
of objects

class UndirectedGraph:

 def __init__(self):

 self.neighbor_dict = {}

 def AddNode(self, node):

 # code to add a node

 def AddEdge(self, node1, node2):

 # code to add an edge connecting two nodes

 def HasNode(self, node):

 # return True if graph has specified node

 # etc.

>>> g = UndirectedGraph()

>>> g.AddNode(0)

>>> g.AddEdge(1,2)

>>> g.AddEdge(2,3)

>>> g.HasNode(4)

False

“self” refers to the particular

object instance we are working

with, in this case the graph “g”

g.AddNode(0) is shorthand for

UndirectedGraph.AddNode(g,0)

0

1 2

3

Computing for small-world networks:
graph traversal algorithms

• graph traversal

- iterating through a graph (i.e., over its nodes and
edges) and calculating some quantity of interest

! average shortest path: shortest path between all
pairs of nodes in a graph

! node and edge betweenness: what fraction of
shortest paths each node or edge participates in

! connected clusters (percolation)

- traversing nodes and edges, marking nodes as visited
so they get visited only once

! most common: breadth-first and depth-first

• breadth-first search

- involves iterating through the neighbors of all the
nodes in the current shell, and adding to the next
shell all subsequent neighbors which have not
already been visited

0

Depth-first

1

2

3

4

5 6

7

0

Breadth-first

1

4

5

2

6 7

3

Network growth, structure, etc.

• Other papers/projects for further consideration (or maybe you have your own in mind)

- Barabasi and Albert, “Emergence of scaling in random networks”

! power-law degree distributions (actor network with bipartite graph?)

- Callaway et al., “Are randomly grown graphs really random?”

! essential singularity for onset of connected cluster

- Girvan and Newman, “Community structure in social and biological networks”

! quantifying tightly-knit groups in large networks

- Yu et al., “The importance of bottlenecks in protein networks: Correlation with gene
essentiality and expression dynamics”

! role of betweenness in organizing biological networks

- Kaiser and Hilgetag, “Nonoptimal Component Placement, but Short Processing Paths, due
to Long-Distance Projections in Neural Systems”

! investigation of wiring lengths and processing paths from neural network data

- graph layout is also an interesting problem

! how to optimally place graph nodes and edges (e.g., on a 2D display) when there is no
intrinsic geometric information attached to graph

NetworkX: a Python package for creating, manipulating,
and analyzing networks (networkx.lanl.gov)

