
 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

Exercises

8.15 NP-completeness and kSAT.1 2 (Computer
science, Computation, Mathematics) ©4

In this exercise you will numerically investigate
a phase transition in an ensemble of problems in
mathematical logic, called kSAT [8,93]. In partic-
ular, you will examine how the computational diffi-
culty of the problems grows near the critical point.
This exercise ties together a number of fundamen-
tal issues in critical phenomena, computer science,
and mathematical logic.

The kSAT problem we study is one in a class
of problems called NP–complete. In other exer-
cises, we have explored how the speed of algorithms
for solving computational problems depends on the
size N of the system. (Sorting a list of N elements,
for example, can be done using of order N log N
size comparisons between elements.) Computer sci-
entists categorize problems into complexity classes;
for example, a problem is in P if it can guarantee
a solution3 in a time that grows no faster than a
polynomial in the size N . Sorting lists is in P (the
time grows more slowly than N2, for example, since
N log N < N2 for large N); telling whether an N
digit number is prime has recently been shown also
to be in P. A problem is in NP4 if a proposed
solution can be verified in polynomial time. For
example, factoring an integer with N digits is not
known to be in P (since there is no known algo-
rithm for finding the factors5 of an N -digit integer

that runs in a time polynomial in N), but it is in
NP.

(a) Given two proposed factors of an N digit inte-
ger, argue that the number of computer operations
needed to verify whether their product is correct is
less than a constant times N 2.

There are many problems in NP that have no
known polynomial-time solution algorithm. A large
family of them, the NP–complete problems, have
been shown to be maximally difficult, in the sense
that they can be used to efficiently solve any other
problem in NP. Specifically, any problem in NP

can be translated (using an algorithm that runs
in time polynomial in the size of the problem) into
any one of the NP–complete problems, with only a
polynomial expansion in the size N . A polynomial-
time algorithm for any one of the NP–complete
problems would allow one to solve all NP prob-
lems in polynomial time.

• The traveling salesman problem is a classic ex-
ample. Given N cities and a cost for traveling
between each pair and a budget K, find a round-
trip path (if it exists) that visits each city with
cost < K. The best known algorithm for the
traveling salesman problem tests a number of
paths that grows exponentially with N—faster
than any polynomial.

• In statistical mechanics, the problem of finding
the lowest-energy configuration of a spin glass6

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 186. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers, with help from Bart Selman and Carla Gomes.
3P and NP–complete are defined for deterministic, single-processor computers.
There are polynomial-time algorithms for solving some problems (like prime fac-
torization) on a quantum computer, if we can figure out how to build one.
4NP does not stand for ‘not polynomial’, but rather for non-deterministic poly-

nomial time. NP problems can be solved in polynomial time on a hypothetical
non-deterministic parallel computer—a machine with an indefinite number of CPUs
that can be each run on a separate sub-case.
5The difficulty of factoring large numbers is the foundation of some of our public-key

cryptography methods, used for ensuring that your credit card number on the web
is available to the merchant without being available to anyone else listening to the
traffic. Factoring large numbers is not known to be NP -complete.
6Technically, as in the traveling salesman problem, we should phrase this as a decision
problem. Find a state (if it exists) with energy less than E.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf

 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

2

is also NP–complete (Section 12.3.4).

• Another NP–complete problem is 3-colorability
(Exercise 1.8). Can the N nodes of a graph be
colored red, green, and blue so that no two nodes
joined by an edge have the same color?

One of the key challenges in computer science is
determining whether P is equal to NP—that is,
whether all of these problems can be solved in
polynomial time. It is generally believed that
the answer is negative, that in the worst cases
NP–complete problems require exponential time to
solve.

Proving a new type of problem to be NP–
complete usually involves translating an existing
NP–complete problem into the new type (expand-
ing N at most by a polynomial). In Exercise 1.8, we
introduced the problem of determining satisfiability
(SAT) of Boolean logical expressions. Briefly, the
SAT problem is to find an assignment of N logical
variables (true or false) that makes a given logical
expression true, or to determine that no such as-
signment is possible. A logical expression is made
from the variables using the operations OR (∨),
AND (∧), and NOT (¬). We introduced in Exer-
cise 1.8 a particular subclass of logical expressions
called 3SAT which demand simultaneous satisfac-
tion of M clauses in N variables each an OR of
three literals (where a literal is a variable or its
negation). For example, a 3SAT expression might
start out

[(¬X27) ∨ X13 ∨ X3] ∧ [(¬X2) ∨ X43 ∨ (¬X21)]
(1)

We showed in that exercise that 3SAT is NP–
complete by translating a general 3-colorability
problem with N nodes into a 3SAT problem with
3N variables. As it happens, SAT was the first
problem to be proven to be NP–complete; any NP

problem can be mapped onto SAT in roughly this
way. 3SAT is also known to be NP–complete, but
2SAT (with clauses of only two literals) is known
to be P, solvable in polynomial time.

Numerics

Just because a problem is NP–complete does not
make a typical instance of the problem numerically
challenging. The classification is determined by
worst-case scenarios, not by the ensemble of typ-
ical problems. If the difficult problems are rare,
the average time for solution might be acceptable
even though some problems in the ensemble will
take exponentially long times to run. (Most col-
oring problems with a few hundred nodes can be

either quickly 3-colored or quickly shown to need
four; there exist particular maps, though, which
are fiendishly complicated.) Statistical mechanics
methods are used to study the average time and
distribution of times for solving these hard prob-
lems.

In the remainder of this exercise we will implement
algorithms to solve examples of kSAT problems,
and apply them to the ensemble of random 2SAT

and 3SAT problems with M clauses. We will see
that, in the limit of large numbers of variables N ,
the fraction of satisfiable kSAT problems under-
goes a phase transition as the number M/N of
clauses per variable grows. Each new clause re-
duces the scope for possible solutions. The random
kSAT problems with few clauses per variable are
almost always satisfiable, and it is easy to find a
solution; the random kSAT problems with many
clauses per variable are almost always not satisfi-
able, and it is easy to find a contradiction. Only
near the critical point where the mean number of
solutions vanishes as N → ∞ is determining satis-
fiability typically a challenge.

A logical expression in conjunctive normal form
with N variables Xm can conveniently be rep-
resented on the computer as a list of sublists
of non-zero integers in the range [−N, N], with
each integer representing a literal (−m represent-
ing ¬Xm) each sublist representing a disjunction
(OR) of its literals, and the list as a whole rep-
resenting the conjunction (AND) of its sublists.
Thus [[−3, 1, 2], [−2, 3,−1]] would be the expression
((¬X3) ∨ X1 ∨ X2) ∧ ((¬X2) ∨ X3 ∨ (¬X1)).

Download the hints and animation software from
the computer exercises portion of the text web
site [129].

(b) Do exercise 1.8, part (b). Generate on the
computer the conjunctive normal form for the 3-
colorability of the two graphs in Fig. 1.8. (Hint:
There should be N = 12 variables, three for each
node.)

The DP (Davis–Putnam) algorithm for determin-
ing satisfiability is recursive. Tentatively set a vari-
able to true, reduce the clauses involving the vari-
able, and apply DP to the remainder. If the re-
mainder is satisfiable, return satisfiable. Otherwise
set the variable to false, again reduce the clauses
involving the variable, and return DP applied to
the remainder.

To implementing DP, you will want to introduce
(i) a data structure that connects a variable to the

 Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 --

Exercises 3

clauses that contain it, and to the clauses that con-
tain its negation, and (ii) a record of which clauses
are already known to be true (because one of its lit-
erals has been tentatively set true). You will want
a reduction routine which tentatively sets one vari-
able, and returns the variables and clauses changed.
(If we reach a dead end—a contradiction forcing
us to unset the variable—we’ll need these changes
in order to back up.) The recursive solver which
calls the reduction routine should return not only
whether the network is satisfiable, and the solution
if it exists, but also the number of dead ends that
it reached.

Fig. 8.20 D–P algorithm. A visualization of the
Davis–Putnam algorithm during execution. Black cir-
cles are unset variables, the other shades are true and
false, and bonds denote clauses whose truth is not es-
tablished.

(c) Implement the DP algorithm. Apply it to your
3-colorability expressions from part (b).

Let us now explore how computationally challeng-
ing a typical, random 3SAT problem is, as the
number M/N of clauses per variable grows.

(d) Write a routine, given k, N and M , that gener-
ates M random kSAT clauses using N variables.
Make sure that no variable shows up twice in the
same clause (positive or negative). For N =5, 10,
and 20 measure the fraction of 2SAT and 3SAT

problems that are satisfiable, as a function of M/N .
Does the fraction of unsatisfiable clusters change

with M/N? Around where is the transition from
mostly satisfiable to mostly unsatisfiable? Make
plots of the time (measured as number of dead ends)
you found for each run, versus M/N , plotting both
mean and standard deviation, and a scatter plot of
the individual times. Is the algorithm slowest near
the transition?

The DP algorithm can be sped up significantly with
a few refinements. The most important is to re-
move singletons (‘length one’ clauses with all but
one variable set to unfavorable values, hence deter-
mining the value of the remaining variable).

(e) When reducing the clauses involving a tenta-
tively set variable, notice at each stage whether any
singletons remain; if so, set them and reduce again.
Try your improved algorithm on larger problems. Is
it faster?

Heavy tails and random restarts. The DP algo-
rithm will eventually return either a solution or a
judgment of unsatisfiability, but the time it takes
to return an answer fluctuates wildly from one run
to another. You probably noticed this in your scat-
ter plots of the times—a few were huge, and the
others small. You might think that this is mainly
because of the rare, difficult cases. Not so. The
time fluctuates wildly even with repeated DP runs
on the same satisfiability problem [49].

(f) Run the DP algorithm on a 2SAT problem
many times on a single network with N = 40 vari-
ables and M = 40 clauses, randomly shuffling the
order in which you select variables to flip. Estimate
the power law ρ(t) ∼ tx giving the probability of the
algorithm finishing after time t. Sort your vari-
ables so that the next one chosen (to be tentatively
set) is the one most commonly arising (positive or
negative) in the clauses. Does that speed up the
algorithm? Try also reversing the order, choosing
always the least used variable. Does that dramati-
cally slow down your algorithm?

Given that shuffling the order of which spins you
start with can make such a dramatic difference in
the run time, why persist if you are having trouble?
The discovery of the heavy tails motivates adding
appropriate random restarts to the algorithm [49];
by throwing away the effort spent exploring the
neighborhood of one spin choice, one can both im-
prove the average behavior and avoid the heavy
tails.

It is known that 2SAT has a continuous phase
transition at M/N = 1, and that 3SAT has an

 Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 --

4

abrupt phase transition (albeit with critical fluc-
tuations) near M/N = 4.25. 3SAT is thought to
have severe critical slowing-down near the phase
transition, whatever algorithm used to solve it.
Away from the phase transition, however, the
fiendishly difficult cases that take exponentially
long for DP to solve are exponentially rare; DP
typically will converge quickly.

(g) Using your best algorithm, plot the fraction
of 2SAT problems that are SAT for values of
N = 25, 50, and 100. Does the phase transition
appear to extrapolate to M/N = 1, as the litera-
ture suggests? For 3SAT, try N = 10, 20, and
30, and larger systems if your computer is fast. Is
your phase transition near M/N ≈ 4.25? Sitting

at the phase transition, plot the mean time (dead
ends) versus N in this range. Does it appear that
2SAT is in P? Does 3SAT seem to take a time
which grows exponentially?

Other algorithms. In the past decade, the methods
for finding satisfaction have improved dramatically.
WalkSAT [116] starts not by trying to set one vari-
able at a time, but starts with a random initial
state, and does a zero-temperature Monte Carlo,
flipping only those variables which are in unsatis-
fied clauses. The best known algorithm, SP, was
developed by physicists [92,48] using techniques de-
veloped to study the statistical mechanics of spin-
glasses.

	Exercises
	NP-completeness and kSAT

