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Course Overview 

Week 1 Lecture Notes 
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Goals for CIS 4205 

•  Introduction to HPC – Practical experience for your research 

•  Finding the parallelism in your work 

•  Measuring speedup & efficiency and the factors that affect it 

•  Writing & debugging parallel code (MPI & OpenMP) 

•  Exposure to using production HPC systems at Cornell 

•  Effective techniques for inherently (“embarrassingly”) parallel codes 

•  Critical analysis of current & future HPC solutions 
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A Little About Me 

•   Role at the Cornell Center for Advanced Computing 
–  Senior Research Associate: consulting, training, advising, & participating 
–  Involved in HPC around 25 years 

•  Background 
–  Education 
–  Experience 

•  Research interests 
–  Numerical modeling and simulation  
–  Fluid and plasma dynamics  
–  Parallel computing  
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A Little About You* 

•  Fields of study and/or research interests 

•  Programming experience 
–  C, C++, Fortran, Others… 
–  Scripting languages 

•  Practical experiences 
–  Ever written a program from scratch for your research? 
–  Ever had to work with someone else’s code? 
–  Which was harder?  Why? 

•  HPC experience 

•  Your goals for this course 

* - (“A Little Bit Me, A Little Bit You” – Monkees, 1967) 
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Assignments 

•  Check the course website before every class 
–  http://www.cac.cornell.edu/~slantz/CIS4205 

•  Assignments are due on date specified 

•  Assignments should be emailed to me 
–  slantz@cac.cornell.edu 

•  Assignments can be done on any HPC system 
–  Windows, Linux, Macintosh OS X 
–  HPC system must have MPI, OpenMP & batch scheduling system 

•  Access to CAC HPC systems is available 
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Connecting to CAC Resources 

•  All students’ Cornell NetIDs will be added the course account 
–  Everyone will have the option to use CAC resources for assignments 

•  Accessing CAC machines 
–  http://www.cac.cornell.edu/Documentation/Linux.asx 
–  http://www.cac.cornell.edu/Documentation/Linux 

•  Poll: what’s your background? 
–  Familiar with Linux? 
–  Familiar with ssh and X Windows? 
–  Comfortable with text editors (emacs, vi)? 
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Where and How to Find Me 

•  Physical and and virtual whereabouts 
–  Office: 533 Frank H. T. Rhodes Hall 
–  Phone: 4-8887 
–  Email: slantz@cac.cornell.edu 

•  Office hours by appointment  
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Introduction to High Performance Computing 
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Why HPC?  Why Parallel Computing? 

•  Want to have best possible time-to-solution, minimize waiting 

•  Want to gain a competitive advantage 

•  As expected, processor clock speeds have flattened out 
–  Not the end of Moore’s law: transistor densities are still doubling every 1.5 years 
–  Clock speeds limited by power consumption, heat dissipation, current leakage 
–  Bad news for mobile computers! 

•  Parallelism will be the path toward future performance gains 
–  Trend is toward multi-core: put a cluster on a chip (in a laptop) 
–  Goes well beyond microarchitectures that have multiple functional units 

10 
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Evolution of HPC 

Centralized Big-Iron 

Decentralized Collections 

Mainframes – CRAYs – Vector Supercomputers 

Mini Computers 

PCs 
RISC Workstations 

RISC MPPS 

Specialized 
Parallel Computers 

Clusters 
Grids + Clusters 

1970 1980 1990 2000 

NOWS 

PCs 

11 



Steve Lantz 
Computing and Information Science 4205 
www.cac.cornell.edu/~slantz 

The Cornell Programmer’s View 

Timeframe – hardware – parallel programming model 

•  Mid ’80’s – IBM mainframe with attached Floating Point Systems array 
processors – IBM and FPS compiler extensions 

•  Late ’80’s – Interconnected IBM 3090 mainframes featuring internal vector 
processors – Parallel VS FORTRAN and APF compilers 

•  Early ’90’s – IBM SP1, rack-mounted RS6000 workstations with POWER 
RISC processors networked via multistage crossbar switch; KSR-1 from 
Kendall Square Research – PVM, MPL, MPI message passing libraries; 
HPF/KAP directives; KSR compiler for ALLCACHE “virtual shared memory” 

•  Mid ’90’s – IBM SP2 featuring POWER2 and P2SC – MPI (not a compiler) 

•  Late ’90’s to present – Several generations of Dell HPC clusters (Velocity 
1, 1+, 2, 3), quad or dual Intel Pentiums running Windows, Red Hat Linux – 
MPI plus OpenMP compiler directives for multithreading 

12 
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Current HPC Platforms: COTS-Based Clusters 

COTS = Commercial off-the-shelf 

… 

Login Node(s) 

Access 
Control 

Compute Nodes 

File 
Server(s) 

13 
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Shared and Distributed Memory 

core1 core2 

CPU1 

core1 core2 

CPU2 

controller RAM 

FSB 

Platform (node) 

node1 node2 node3 

Cluster interconnect 

Shared memory on each node… Distributed memory across cluster 

Multi-core CPUs in clusters – two types of parallelism to consider 

14 
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Shared and Distributed Memory 

core1 core2 

CPU1 

core1 core2 

CPU2 

controller RAM 

FSB 

Platform (node) 

node1 node2 node3 

Cluster interconnect 

Shared memory on each node… Distributed memory across cluster 
OpenMP 
Pthreads 

MPI 
MPI 

15 
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OpenMP and MPI?  In 2009? 

Strengths: 
•  Adherence to carefully defined specifications (not standards per se) 
•  Specifications still under active development 
•  Cross-platform, multi-OS, multi-language (e.g., pypar in Python) 
•  Wide acceptance 
•  Time-tested with large existing code base 
•  Useful for both data and task (functional) parallelism 

Weaknesses: 
•  Relatively low-level programming (though not as low as pthreads) 
•  Mindset taken from procedural languages (C, Fortran) 

16 
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Where’s My Parallel Compiler? 

•  You’ve had it for years!  “Serial” compilers produce code that takes 
advantage of parallelism at the top of the memory hierarchy 

http://www.tomshardware.com/2006/06/26/xeon_woodcrest_preys_on_opteron/page9.html 

Example: SSE(2/3/4) 
instructions operate on 
several floats or doubles 
simultaneously using 
special 128-bit-wide 
registers in Intel Xeons 
(vector processing) 

17 
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Parallelism Inside the Intel Core 

http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2748&p=4 

In the Intel Core 
microarchitecture: 
•  4 instructions 

per cycle 
•  Branch 

prediction 
•  Out-of-order 

execution 
•  5 prefetchers 
•  4MB L2 cache 
•  3 128-bit SSE 

registers 
•  1 SSE / cycle 

18 
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Why Not Crank Up the Clock? 

Because the 
CPU’s power 
consumption 
goes up like 
the cube of 
frequency! 

No wonder 
Intel tries so 
hard to boost 
the IPC… 

19 
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OK, What’s Next? 

Trend toward growing numbers of 
cores per processor die 

•  Moore’s Law still holds; 
transistor densities are still 
increasing  

•  Higher densities don’t translate 
into faster speeds due to: 

–  Problems with heat dissipation 
–  Hefty power requirements 
–  Leakage current 

•  The “free lunch” of ever-
increasing clock speeds is over!  http://www.gotw.ca/publications/concurrency-ddj.htm 

20 
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Signs of the Times… 

•  IBM promotes BlueGene HPC line with 1000’s of low-frequency, low-
power chips (700 MHz PowerPCs) 

•  On 2/11/07, Intel announces successful tests of an 80-core research 
processor – “teraflops on a chip” 

21 
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Implications for Programmers 

•  Concurrency will no longer be just desirable, it will be essential 
–  Previously it was the economical path to greater performance 
–  Now it has become the physically reasonable path 

•  Compilers (still) aren't the answer 
–  Degree of concurrency depends on algorithm choices 
–  Need for high-level creation (as opposed to mere identification) of concurrent 

code sections 
•  Improved programming languages could make life easier, but nothing 

has caught on yet 
•  Some newer languages (Java, C++) do have mechanisms for 

concurrency built in… but kind of clumsy to use… 
•  In the final analysis: TANSTAAFL 

22 
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Conclusions 

•  Future processor technology will drive programmers to create and 
exploit concurrency in their software to get performance 

•  Some problems are inherently not parallelizable; what then? 
–  “9 women can't produce a baby in one month” 
–  …But… what if the goal isn't just to produce one baby, but many? 
–  “Embarrassing parallelism” isn’t so embarrassing any more 
–  Examples: optimization of a design; high-level Monte Carlo simulation 

•  Coding for efficiency and performance optimization will get more, not 
less, important 

–  Not all performance gains need to come from high-level parallelism 
–  Nevertheless, parallelism needs to be designed into codes, preferably from the 

beginning 

23 
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Parallel Computing: Types of Parallelism 
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Parallel Computing: Definitions 

•  As we have seen, HPC necessarily relies on parallel computing 
•  Parallel computing… 

–  Involves the use of multiple processors simultaneously to reduce the time 
needed to solve a single computational problem. 

•  Examples of fields where this is important: 
–  Climate modeling, weather forecasting 
–  Aircraft and ship design 
–  Cosmology, simulations of the evolution of stars and galaxies 
–  Molecular dynamics and electronic (quantum) structure 

•  Parallel programming… 
–  Is writing code in a language (plus extensions) that allows you to explicitly 

indicate how different portions of the computation may be executed concurrently 
•  Therefore, the first step in parallel programming is to identify the 

parallelism in the way your problem is being solved (algorithm) 

25 
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Data Parallelism 

Definition: when independent tasks can apply the same operation to 
different elements of the data set at the same time. 

Examples:  
 2 brothers mow the lawn 
 8 farmers paint a barn 

C 

B 

A 

B B 
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Data Parallelism 
Partitions of the Data Can Be Processed Simultaneously 

// initialize array values to 1 
 a[]=1;  
 b[]=1; 
 c[]=1; 

 for (i=0; i<3; i++) 
  { 
   a[i] = b[i] + c[i]; 
  } 

// Serial Execution 
 i=0 (a[0] = 2) 
 a[0] = b[0] + c[0];  
 i=1 (a[1] = 2) 
 a[1] = b[1] + c[1];  
 i=2 (a[2] = 2) 
 a[2] = b[2] + c[2];  

// Parallel Execution 
 i=0 (a[0] = 2)   i=1 (a[1] = 2)   i=2 (a[2] = 2) 
 a[0] = b[0] + c[0];  a[1] = b[1] + c[1];  a[2] = b[2] + c[2];  
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Data Parallelism 
MPI Example 

#include <stdio.h> 
#include <mpi.h> 
#include <malloc.h> 

void main(int argc, char **argv ) 
 { 
  int myid, numprocs; 
  int i; 
  int *a,*b,*c; 
  MPI_Status status; 

  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
  MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

  a = (int *) malloc(numprocs*sizeof(int)); 
  b = (int *) malloc(numprocs*sizeof(int)); 
  c = (int *) malloc(numprocs*sizeof(int)); 

  for (i=0;i<numprocs;i++) 
   { 
    // initialize array values to i 
    a[i]=i;  
    b[i]=i; 
    c[i]=i; 
   } 
  a[myid] = b[myid] + c[myid]; 
  printf("a[%d] = %d\n",myid,a[myid]); 
  MPI_Finalize(); 
 } 

mpiexec –n 8 dp1.exe 

3: a[3] = 6 

4: a[4] = 8 

5: a[5] = 10 

7: a[7] = 14 

0: a[0] = 0 

2: a[2] = 4 

6: a[6] = 12 

1: a[1] = 2 
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Functional Parallelism 

Definition: when independent tasks can apply different operations to the 
same (or different) data elements at the same time. 

Examples:  
 2 brothers do yard work (1 rakes, 1 mows) 
 8 farmers build a barn 

A 

B C D 

E 
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Functional Parallelism 
Partitions of the Program Can Execute Simultaneously 

// initialize values 0-9 
 a[]=i;  
 b[]=i; 

// These different operations can happen at the same time 
 for (i=0; i<10; i++) 
  { 
   c[i] = a[i] + b[i]; 
  } 
 for (i=0; i<10; i++) 
  { 
   d[i] = a[i] * b[i]; 
  } 

// This part requires solutions from above 
 for (i=0; i<10; i++) 
  { 
   e[i] = d[i] - c[i]; 
  } 
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Functional Parallelism 
MPI Example 

#include <stdio.h> 
#include <mpi.h> 
#include <malloc.h> 

void main(int argc, char **argv ) 
 { 
  int myid, numprocs; 
  int i; 
  int iter=10; 
  int *a,*b,*c,*d,*e; 
  MPI_Status status; 

  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
  MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

  if (numprocs < 3) 
   { 
    printf("ERROR: This example requires 3 processes\n"); 
   } 
  else 
   { 
    a = (int *) malloc(iter*sizeof(int)); 
    b = (int *) malloc(iter*sizeof(int)); 
    c = (int *) malloc(iter*sizeof(int)); 
    d = (int *) malloc(iter*sizeof(int)); 
    for (i=0; i<iter; i++) 
     { 
      a[i] = i; 
      b[i] = i; 
     } 

if (myid == 0) 

     { 

      MPI_Recv(c,10,MPI_INT,1,0,MPI_COMM_WORLD,&status); 

      MPI_Recv(d,10,MPI_INT,2,0,MPI_COMM_WORLD,&status); 

      e = (int *) malloc(iter*sizeof(int)); 

      for (i=0; i<iter; i++)  

       {  

        e[i] = d[i] - c[i];  

        printf("e[%d] = %d\n",i,e[i]);  

       }        

     } 

    else if (myid == 1) 

     { 

      for (i=0; i<iter; i++) { c[i] = a[i] + b[i]; } 

      MPI_Send(c,10,MPI_INT,0,0,MPI_COMM_WORLD); 

     } 

    else if (myid == 2) 

     { 

      for (i=0; i<iter; i++) { d[i] = a[i] * b[i]; } 

      MPI_Send(d,10,MPI_INT,0,0,MPI_COMM_WORLD);  

     } 

    else 

     { 

      printf("Process id %d not needed\n",myid); 

     } 

   } 

  MPI_Finalize(); 

 } 
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Task Parallelism 

Definition: when independent “Worker” tasks can perform functions that  
do not need to communicate with each other, only with a “Master” or 
“Manager” process. 

Such tasks are often called “Embarrassingly Parallel” because they can 
be parallelized with little extra work or thought. 

Examples:  
 Independent Monte Carlo Simulations 
 ATM Transactions 

A 

B C D 
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Task Parallelism 
Independent Tasks are Distributed as Workers are Available 

// initialize values 0-99 

 a[]=i;  

 b[]=i; 

// Send each idle worker an index of a[] & b[] to add and return the sum 

// and continue while there is still work to be done 

 while (i<100) 

   { 

   // find an idle worker & send it value of i (index) to add 

   // receive back summed values 

  } 
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Pipeline Parallelism 

Definition: each task works on one stage in a sequence of stages. The 
output of one stage is the input of the next.  (Note: This works best 
when each stage takes the same amount of time to complete) 

Examples:  
 Assembly lines   
 Computing partial sums 

A 

B 

C 

T0    T1    T2    T3    T4    T5    T6    T7    T8    T9 

i 

i 

i 

i 

i+1 i+2 i+3 i+4 i+5 i+6 

i+1 i+2 

i+1 

i+3 

i+2 

i+1 

i+4 

i+3 

i+2 

i+5 

i+4 

i+3 

i+6 

i+5 

i+4 

i+6 

i+5 i+6 
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Pipeline Parallelism 

// Process 0 initializes a[] & b[] 

 for (i=0; i<=3; i++)  

     { 

      a[i] = i; 

      b[i] = 0; 

     } 

 b[0] = a[0]; 

// Process 0 sends a & b to Process 1 

// Process 1 receives a & b from Process 0 

 b[1] = b[0] + a[1]; 

// Process 1 sends a & b to Process 2 

// Process 2 receives a & b from Process 1 

 b[2] = b[1] + a[2]; 

// Process 2 sends a & b to Process 3 

// Process 3 receives a & b from Process 2 

 b[3] = b[2] + a[3]; 
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Tightly Coupled Parallel Approaches 
Parallel tasks must exchange data during the computation 

Loosely Coupled Parallel Approaches  
Parallel tasks can complete independent of each other 

for (int i=0; i < n; i++) 

 { 

  for (int j=0; j < m; j++) 

   { 

    //Perform Calculation Here 

   } // for j 

 } // for i 

Tightly vs. Loosely Coupled Parallelism 
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Tightly Coupled Example: Strong Data Dependencies 
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Loosely Coupled Example: Master-Worker Codes 
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HPC Examples at Cornell: 
Parallel Computing and Data Intensive Computing 
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Cornell Institute for Social and Economic Research 
 http://www.ciser.cornell.edu/ 

Computational Biology Service Unit 
 http://cbsu.tc.cornell.edu/index.htm 

Computational Finance 
 http://www.orie.cornell.edu/orie/manhattan/ 

Cornell Fracture Group 
 http://www.cfg.cornell.edu 

Parallel Computing Examples 
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Modern Research is Producing Massive Amounts of Data  
–  Microscopes 
–  Telescopes  
–  Gene Sequencers   
–  Mass Spectrometers  
–  Satellite & Radar Images 
–  Distributed Weather Sensors  
–  High Performance Computing (especially HPC Clusters) 

Research Communities Rely on Distributed Data Sources 
–  Collaboration 
–  Virtual Laboratories 
–  Laboratory Information Management Systems (LIMS) 

New Management and Usage Issues 
–  Security 
–  Reliability/Availability 
–  Manageability 
–  Data Locality – You can’t ftp a petabyte to your laptop…. 

Data Intensive Computing Applications 
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Cornell Fracture Group 
Tony Ingraffea 
Serving Finite Element Models via SQL Server & Web Services 

 http://www.cfg.cornell.edu/ 

Physically Accurate Imagery 
Steve Marschner 

 http://www.cs.cornell.edu/~srm/ 

The Structure and Evolution of the Web 
William Arms 

 http://www.cs.cornell.edu/wya/ 

Data Intensive Computing Examples 

Arecibo - World’s Largest Radiotelescope  
Johannes Gehrke, Jim Cordes, David Lifka 
Serving Astronomy Data via SQL Server and Web Services 

 http://arecibo.tc.cornell.edu/PALFA 
 http://www.cs.cornell.edu/johannes/ 
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High Performance Computing Architectures 
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Flynn’s Taxonomy 
 Classification Scheme for Parallel Computers 

SISD SIMD 

MIMD MISD 
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Examples from Flynn’s Categories 

•  SISD – Single Instruction Stream, Single Data Stream 
–  Common uniprocessor machines 

•  SIMD – Single Instruction Stream, Multiple Data Streams 
–  Processor arrays (including GPUs) & pipelined vector processors 

•  MISD – Multiple Instruction Streams, Single Data Stream 
–  Systolic arrays: think data pump or pumping-heart model (not many built) 

•  MIMD – Multiple Instruction Streams, Multiple Data Streams 
–  Multiprocessors and multicomputers 

•  Multiprocessor: multi-CPU computer with shared memory 
–  SMP: Symmetric MultiProcessor (uniform memory access) 
–  NUMA: Non Uniform Memory Access multiprocessor 

•  Multicomputer: team of computers with distributed CPUs and memory 
–  Must have external interconnect between “nodes” 

45 
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Shared vs. Switched Media 

bus 

processors 

switch 

processors 

NUMA, Multicomputer: 
switch can grow with 
number of processors 

SMP: not scalable, 
bus becomes congested 
as processors are added 

46 
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2D Mesh and Torus Topologies 

47 
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Hypercube Topology 

48 
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Tree, Fat Tree, and Hypertree Topologies 

Fat tree if links get wider toward the top… 

49 
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Clos Network: Equal to a Full Crossbar Switch, 
Better Than a Hypertree (Fewer Hops) 

Generally n = m, so inputs and outputs can be bundled 
into the same cable and plug into a single switch port 

50 
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Comparison of Switched Media 

Mellanox 36-port InfiniBand switch 

Type Latency Bandwidth Cost 
Gigabit Ethernet ~1 msec 0.1 gigabyte/sec $ 
10 Gigabit Ethernet ~100 µsec 1.0 gigabyte/sec $$ 
QDR InfiniBand ~1µsec 3.6 gigabyte/sec $$$ 

51 
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Computing Concepts 

52 
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Single 
Processor 
Memory 
Hierarchy 

53 
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Creating and Running Software 

•  Compiler 
–  Produces object code: from myprog.c, creates myprog.o (Windows: .obj) 

•  Linker 
–  Produces complete executable, including object code imported from libraries 

•  Shared Objects (.so) and Dynamic Load Libraries (Windows DLLs) 
–  These are loaded at runtime: the link step inserts instructions on what to import 
–  If a shared object is loaded, a single copy can be used by multiple processes 

•  Process 
–  A running executable: the OS controls multitasking of processes via scheduling  

•  Virtual Memory 
–  “Address space” available to a running process, addresses can be 32- or 64-bit 

•  Paging (to Disk) 
–  Physical RAM has been exceeded: requested data are not in any cache (cache 

miss) or in RAM (page fault) must be loaded from swap space on a hard drive 

54 


